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EXECUTIVE SUMMARY 

The 2010 Highway Safety Manual (HSM) provides methods for predicting the number of motor 
vehicle crashes on various roadway facilities (AASHTO, 2010). Safety performance functions 
(SPFs) are able to estimate the relationship between collisions and exposure by accounting for 
the nonlinear relationship between exposure and risk. While SPFs have been comprehensively 
developed for motor vehicles, the HSM includes only a simplistic method for predicting the 
number of bicycle-related crashes. Despite research demonstrating that bicycle volume is an 
important factor in estimating the number of bicycle crashes, the existing bicycle-related crash 
method does not include the volume of bicyclists using the roadway (Nordback et al., 2014).  
Thus, there is a critical need to further develop bicycle-specific SPFs. While a few studies have 
created SPFs for bicycle crashes at intersections, no studies have analyzed bicycle crashes along 
road segments.   

To create models to study bicycle crashes along road segments, robust safety data are 
needed. After a review of the bicycle-safety literature, the first step was to investigate possible 
data sets for study. The research team investigated the bicycle-specific crash data in eight potential 
study areas around the U.S.: Arlington, VA (city/county); Bellingham, WA (city); Boulder, CO 
(city); Denver, CO (city/county); Minneapolis and St. Paul, MN (cities); Philadelphia, PA 
(city/county); Portland, OR (city); and San Diego, CA (county). The available online data from 
each location were compared. Boulder was selected for further study based on the availability of 
both crash data and count data (continuous and short-duration bicycle and pedestrian traffic count 
data). 

To create a bicycle-specific SPF for urban roadway segments, the team used eight years 
(2006-2013) of crash data from Boulder. In this analysis, a negative binomial model with log link 
was used to predict annual, non-fatal, motorist-bicyclist crashes on road segments per mile. The 
analysis shows that motor vehicle volume is a leading factor associated with more crashes between 
motor vehicles and bicyclists. Bicyclist exposure, population density, and percent retail land use 
are also predictive. This study also investigated the potential of various simplified methods to 
include bicycle volumes in future versions of the HSM. The project examined how and if the SPFs 
developed could be simplified for use in future versions of the HSM. A table was created that 
simplified motor vehicle volumes, bicycle volumes, retail land use percentages, and population 
density into two or three categories (high, medium, and low) for each variable. This simplified 
format may reduce the need for difficult-to-find data, such as bicycle volume, and may be of help 
to practitioners who seek to predict the number of motorist-bicyclist crashes on a road segment. 
The research team provided the recommended table as a possible format for consideration in the 
HSM update as a way to generalize the findings of this study for HSM users.  

While this research cannot provide a final HSM-ready version since we have only studied 
one city, it did present the results of this study in a readily usable table, investigate locations 
where data are available, and can inform ongoing NCHRP project 17-84 Pedestrian and Bicycle 
Safety Performance Functions for the HSM (Rogers, 2019). Such SPFs can help prioritize 
projects and inform the transportation decision-making process and future editions of the HSM. 
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1.0 INTRODUCTION 

As a sustainable transportation mode, cycling offers many benefits such as lower congestion and 
emission levels as well as improvements in personal health via enhanced physical activity. In 
2016, 840 cyclists were killed on our nation’s roadways, accounting for over 2 percent of traffic 
fatalities (NHTSA, 2018). According to the American Community Survey one-year estimates, 
cyclists accounted for only 0.6 percent of journey-to-work mode share in 2016 (U.S. Census 
Bureau, 2018). Thus, cyclists are overrepresented in terms of fatalities. From 2005 to 2008, 
cyclist mode share in journey-to-work increased while fatalities decreased, but from 2009 to 
2016 the percent of those traveling to work by bicycle stayed roughly constant while cycling 
fatalities climbed. Overall cyclist fatalities and commute mode share can be seen in Figure 1.1. 
Addressing cyclist safety is especially urgent given the USDOT push to establish safety 
performance measures in its recently updated strategic plan (FHWA, 2017).  

 

Figure 1.1: Cyclist Fatalities and Mode Share in the U.S. (NHTSA, 2018; U.S. Census Bureau, 2018) 
 

Cyclist safety studies continue to mount, but a lack of both bicycle crash data and bicycle traffic 
volumes impedes what would be considered methodologically robust bicyclist safety research. 
This is especially apparent concerning studies that show the impact of specific infrastructure 
changes on cycling safety. Such research is often used to estimate crash modification factors 
(CMF) based on simple multiplicative factors that estimate the potential reduction in crashes due 
to a specific infrastructure change. Of the 136 bicycle-related CMFs listed in the online CMF 
Clearinghouse, there are currently no CMFs of sufficient quality to warrant the four- or five-star 
rating needed to earn safety improvement funds (McKenzie et al., 2014). This illustrates a basic 
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lack of knowledge by the field on what infrastructure changes improve cyclist safety for a given 
bicyclist volume. Despite the lack of data, there are many recent and ongoing efforts to 
understand cyclist safety, including NCHRP 17-84 and NCHRP 15-63 (USDOT, 2017). 
However, without adequate data, these efforts will be hampered. 

While a lack of crash and exposure data continues to be a hindrance to U.S. cyclist safety 
research, studies from other countries can more commonly be conducted at the facility level. 
Canadians, Australians, Swedes, Danes, and other northern Europeans are studying cyclist safety 
and finding that, while cyclist infrastructure may or may not increase cyclist safety, one rule 
holds: the more cyclists there are, the fewer collisions per cyclist (Elvik, 2009). Peter Jacobsen 
brought this to the attention of the U.S. audience in his 2003 paper “Safety in Numbers,” which 
took a city-wide perspective (Jacobsen, 2009). In 2012, Nordback et al. (2014) created the first 
bicycle SPFs for signalized intersections in a U.S. city using crash data and exposure data for one 
example city and found that risk for cyclists decreases when more cyclists use an intersection.  

This research investigated data availability in eight U.S. cities: Arlington, VA; Bellingham, WA; 
Boulder and Denver, CO; Minneapolis/St. Paul, MN; Philadelphia, PA; Portland, OR; and San 
Diego, CA. Note that Seattle, WA was specifically omitted because there were at least two 
bicycle safety research projects being conducted during the same time as this study, and the team 
wanted to avoid duplication of effort (Thomas et al., 2017; Chen 2015). The team first 
investigated the bicycle crash data available in each city and then also examined the bicycle 
volume data available, both short-duration counts and permanent counts. Based on data 
availability, one study city was selected that had all necessary data: Boulder. Since bicycle 
crashes at intersections had been previously studied in this city, crashes on road segments were 
investigated for this report. 

The work began with estimation of annual average bicyclists on road segments using a 
combination of continuous count data and short-term intersection counts from which seasonal 
adjustment factors were computed. Next, sociodemographic factors such as population density, 
employment density, educational attainment, pedestrian volumes, land use, and type of facilities 
were combined with the crash data, and negative binomial models were estimated. In previous 
work based in Boulder, the impact of cyclist volume was apparent (Nordback et al., 2014). The 
same was not as clear for the road segments in this study, though the strong positive relationship 
of motor vehicle volume with motorist-cyclist crashes is clear in both studies.  

This work will allow transportation professionals to better understand the relationship between 
bicycle and motor vehicle traffic volumes and bicyclist collisions. This is fundamental to 
understanding the impact of various facilities and other factors on cyclist safety. The authors 
intend that the results can inform future versions of the Highway Safety Manual as well as 
ongoing research project NCHRP 17-84. To facilitate that, we present a table of expected ranges 
of number of motorist-cyclist crashes for different road-segment types based on the model 
developed. While using a model developed purely from Boulder data to predict crashes in other 
places and other circumstances is not recommended, the table introduces one approach to 
providing a simple bicycle-motorist crash estimation tool. If more cities and location types can 
be studied, this approach might be an appropriate modification to the HSM for bicycle-motorist 
collision prediction. 
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The remainder of this report is laid out in the following manner: A review of the literature is 
next, followed by case studies of eight communities where bicycle crash and bicycle volume data 
were available, as well as a description of the data availability for each city. This is followed by a 
description of the analysis of motorist-bicyclist crashes on road segments in the study city, 
Boulder. Lastly, we present results, conclusions, and recommendations. 
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2.0 LITERATURE REVIEW 

In the past few years, there have been many cyclist safety studies, but few include safety 
performance functions (SPFs) for bicyclists. SPFs predict the average number of crashes per year 
at a location as a function of exposure and roadway or intersection characteristics (AASHTO, 
2010). The Highway Safety Manual (HSM) provides SPFs for motor vehicle crashes; however, 
SPFs for bicycle crashes are not well developed (Nordback et al., 2014). The HSM recommends 
computing the predicted number of crashes for bicycles by multiplying predicted motor vehicle 
collisions by a factor that is based on motor vehicle speed and road type. The main drawback of 
the HSM method is that measures of cyclist exposure are not considered in the estimation. The 
biggest challenge with developing bicycle-specific SPFs is the lack of exposure data. Bicycle 
volumes are rarely available at many locations, and this precludes the creation of SPFs that 
consider cyclist exposure.  

The objectives of this study are to investigate improved methods for cyclist exposure for 
collisions involving bicycles and motor vehicles; understand the impact of factors such as traffic 
volumes, facility type and land use on cyclist safety; and develop statistical models to predict the 
number of cyclist collisions. This study will not include collisions between cyclists and 
pedestrians or single-bicycle crashes. Pertinent literature on cyclist exposure measures, cyclist 
safety at the facility level, and cyclist safety analysis that includes cyclist traffic volume are 
reviewed in the following sections. 

2.1 EXPOSURE MEASURES 

In road safety literature, exposure is defined as proximity to potentially harmful situations 
involving motor vehicles (Molino et al., 2012). To adequately understand cyclist safety, it is 
necessary to determine exposure. Risk is defined as the probability that a crash will occur based 
upon that exposure (Molino et al, 2012). Typical exposure measures that have been used in past 
literature are population measures, volumes, and travel measures such as time, distance, and per 
trip (Vanparijs et al., 2015). Each of these approaches are discussed below. 
 
2.1.1 Population 

The primary assumption with population measures is that more crashes occur in areas with 
higher population density than in areas with lower population density (Molino et al., 2012). 
Traditional statistics produced by NHTSA provide cyclist fatality rates by population (per 10,000 
residents), but these metrics are not sensitive to the amount of time or distance that the cyclist is 
exposed to vehicular traffic (Molino et al., 2012). Another study conducted by Rodgers estimated 
cyclist population using data from a survey conducted on bicycle use (Rodgers et al.1994). Based 
on the estimated population, a fatality rate was computed per one million cyclists. However, as 
stated earlier, this metric is also insensitive to local conditions and density of riders. McAndrews 
et al. (2013) used data from the 2001 National Household Travel Survey (NHTS) to estimate 
fatality and injury rates for all users per 100,000 population.  
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2.1.2 Volume 

Another measure of exposure that is often used is cyclist volume. Annual average daily bicyclists 
(AADB) can be used as an exposure metric, which is estimated from bicycle counts. Nordback et 
al. (2013) used continuous count stations in Colorado to develop factors and applied these factors 
to locations with short-duration counts to estimate AADB. Other studies investigated AADB 
estimation accuracy when varying factors are used (Miranda-Moreno and Nosal, 2011; El 
Elsawey, 2014; Hankey, 2014). The biggest challenge with the factoring approach for estimating 
AADB is developing appropriate factor groups that are representative of the cycling patterns. 
Others, such as Schneider, estimated exposure using models for pedestrians that can predict 
crossing volumes using variables such as land use and other site characteristics (Schneider et al., 
2009). Similar concepts could be extended to estimate bicycle volume. NCHRP-770 (2014) also 
reviewed a number of methods for estimating cycling and walking volumes for planning and 
project development. 
 
2.1.3 Time 

The amount of time that a cyclist or a pedestrian spends in certain activities can also be 
considered as a measure of exposure. A few studies used perceived trip duration information to 
estimate exposure, especially for walking trips (Keall, 1995; Chu, 2003; Bly et al., 1999). Trip 
duration in each of these studies was derived from travel survey data. However, the limitation of 
this approach is that the amount of time spent walking or bicycling is not sensitive to the facility. 
For example, cyclists may ride on trails or sidewalks without any motor vehicles; however, using 
trip duration as an exposure metric will result in exposure being overestimated (Molino et al., 
2012). McAndrews et al. (2013) computed fatality and injury risk for various users using both 
travel and population-based exposure measures. They found that for cyclists, the fatal and injury 
risk estimated using a time-based exposure measure was lower compared to the risk estimated 
using distance and trip-based exposure measures. 
 
2.1.4 Distance 

Another exposure metric that is used in the literature is distance traveled. Kaplan (1975) 
conducted a survey of 3,270 adult cyclists over one year and used bicycle miles traveled as a 
measure of exposure. However, it did not differentiate between distance traveled on shared 
facilities versus distance traveled on exclusive bicycle facilities. Therefore, exposure might be 
overestimated.  
 
Molino et al. (2009) proposed a hundred million bicycle miles of shared facilities traveled as a 
measure of exposure. Observers collected cyclist volumes and crossing distances along different 
facilities, and annual bicycle volumes and travel distances for each type of facility shared with 
motor vehicles were derived through aggregation and summation of the collected data (Molino et 
al., 2012). The shared facilities are defined as those facilities where bicyclists and pedestrians 
share the space with motor vehicles. McAndrews et al. (2013) found that cyclists face 10 times 
the risk of fatality or hospitalized injury compared to motor vehicle occupants when exposure is 
measured based on per person-mile of travel (). 
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2.1.5 Trip 

McAndrews et al. (2013) computed a trip-based measure of exposure across different 
populations of travelers in Wisconsin. Their results showed that fatality and injury risks to 
cyclists are twice as high compared to risks for motor vehicle occupants when measured per 
person by trip. According to McAndrews, using a trip-based measure of exposure normalizes the 
differences in speed between the modes. 
 

2.2 BICYCLE SAFETY AT THE FACILITY LEVEL 

With increased focus on cycling, infrastructure and facilities designed for cyclists have gained 
increased attention in the United States. The Model Inventory of Roadway Elements (MIRE) 
provides the following list of types of bicycle facilities: “None, Wide curb lane with no bicycle 
markings, Wide curb lane with bicycle markings (e.g., sharrows), Marked bicycle lane, Separate 
parallel bicycle path, Signed bicycle route only (no designated bicycle facility), and Other” 
(MIRE FHWA Version 1, 2010).  
 
In Europe, however, separate facilities for cyclists have been in existence since the 1970s. The 
Dutch CROW design manual for bicycle traffic, NACTO's urban bikeway design guide, and the 
Federal Highway Administration outline the different types of infrastructure and facilities for 
cyclists (Dutch CROW, 2006; NACTO, 2014). In particular, they outline seven types of bicycle 
infrastructure: 
 

• Bike Lanes - Defined as a part of a road that’s designated for bicycle use (NACTO, 
2014). These can be: 
• Conventional bike lanes with pavement markings 
• Buffered bike lanes with a designated space to provide separation 
• Contra-flow bike lanes which run in the opposite direction of vehicle traffic 
• Left-sided bike lanes that run on the left side of a one-way road or two-way 

divided streets. 
 

• Cycle Tracks - These are defined as a physically separated lane that is used 
exclusively by bicycles (NACTO, 2014).  These can be: 
• A one-way protected cycle track that exists at the street level but provides 

physical protection from automobiles 
• Raised cycle tracks that are separated from automobiles by a vertical barrier 
• Two-way cycle tracks that allow for bicycle traffic to flow in both directions 

and continue to be separated physically from automobile traffic. 
 

• Intersection Treatments - These are defined as facilities that exist within or near 
intersections that provide additional safety for bicyclists. This category can include:  
• Bike boxes, which are a designated area for bicyclists upstream of a stop bar 

at an intersection that are designed to increase visibility for cyclists and allow 
them to get ahead of automobile traffic 
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• Intersection crossing markings, which are designed to guide bicyclists across 
an intersection 

• Two-stage turn queue boxes that allow for a safe method for bicyclists to 
make a left turn at multilane signal intersections 

• Median refuge islands that offer a physically protected space in the street to 
help bicyclists and pedestrians cross 

• Combined bike lane and turn lanes, which place a bike lane within a section of 
a turn lane that allows for the bicyclist to continue forward through a traffic 
light 

• Cycle track intersection approaches, which allow for guidance of a bicyclist at 
an intersection approach to reduce turn conflicts (NACTO, 2014). 

• Bicycle Signals - These are defined as independent signals and beacons that 
allow for a bicyclist to safely cross roadways and larger streets (NACTO, 
2014). These signals include:   
 Active warning beacons at unsignalized intersections, which are user-

actuated flashing lights that signal to automobile traffic that a pedestrian 
and/or cyclist will cross the street, oftentimes accompanied by existing 
signage 

 Bicycle signal heads, which are independent signals used to give bicyclists 
guidance on when it is safest for them to proceed through an intersection 

 Hybrid beacons that consist of a dual red light over a single yellow light 
on a major street for pedestrian and bicycle crossing, and signal 
detection/actuation, which is a sensor that can be activated by a bicycle to 
alert the signal of a bicycle needing to cross. 
 

• Bikeway Signing and Marking - Defined as any visual treatment that is used to 
indicate the use of the road by bicyclists. These can include: colored bike facilities 
that add a visual difference for the bicycle lane to identify conflict areas or to 
reinforce the right of bicyclists to be in the area; shared lane markings, which inform 
automobile drivers that the lane can be occupied at any given time by bicyclists; and 
bike route wayfinding signage and marking systems, which allow for bicyclists to 
find where the nearest bike route is and get them to their destination in a safe manner 
(NACTO, 2014). 
 

• Bicycle Boulevards - These are streets designed to give bicycle traffic priority 
through the use of lower speed limits, automobile traffic diversions, and volume 
management (NACTO, 2014). This can include:  
• Route planning, which prioritizes low-volume streets over higher-volume 

streets 
• Bicycle boulevard signs and markings, which help to indicate to a bicyclist 

that they are on a bike boulevard and to indicate to automobile drivers that it 
is a shared street 

• Speed management to reduce the speed of automobiles to prevent cars from 
passing bicycles and reduce the effect of a collision should one occur 

• Volume management, which can include physical barriers to automobiles, 
forcing them to larger streets but allowing bicycles to ride through 
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• Minor street crossings to inform automobile drivers that wish to cross a bike 
boulevard that bicyclists and other cross traffic will not stop 

• Major street crossings, which allow for increased visibility and a reduction of 
time delay for cyclists wishing to cross 

• Offset intersections that allow for a non-continuous street to direct bicycle 
flows towards safer streets and then back to their original direction 

• Green infrastructure, which can be integrated with speed and volume 
management treatments. 
 

• Sidewalks - These are paths that are intended for use primarily with pedestrians, 
located between the edge of the roadway and the edge of the right-of-way or the 
nearest property line. Although sidewalks are intended for use by pedestrians only, 
bicyclists have been known to use them despite sidewalk riding being illegal in many 
places (Federal Highway Administration, 2014). 
 

• Shared Use Paths - Paths that run parallel to roads but are physically separated from 
automobile traffic in some manner (e.g., wall, raised curb) that are also intended for 
use by both bicycles, pedestrians, and other recreational forms of transportation. 
There is no separation between bicycle traffic and other forms of traffic (Federal 
Highway Administration, 2014). 
• On-street shared use paths - Shared use paths that run parallel to roads and 

operates as a wide sidewalk. 
• Off-street shared use paths - Paths that offer transportation to bicycles and 

other non-motorized modes by way of a path that runs entirely separate from a 
road or highway. This would include trails that run in their own right-of-way 
such as rail-trails, as well as paths paralleling limited access highways where 
they do not intersect with roadways. 

 
As stated earlier in the literature review, studies have shown that cyclist injuries are dependent 
on the number of cyclists present. If that is true, then the comfort level of cyclists must also be 
taken into account since more comfortable and physically separated facilities may attract more 
cyclists. According to a study by McNeil et al. (2014), 71percent of residents living near newly 
built bike lanes stated that they would consider riding a bicycle if they were separated from 
motor vehicles by a barrier. Additional research conducted by Goodno et al. (2013) and 
Zangenehpour et al. (2014) shows that buffered bike lanes and cycle tracks provide an overall 
increase in the safety and comfort level of cyclists, leading to fewer collisions overall as well as a 
significant increase in the number of cyclists . 
 
According to NACTO (2014), bike lanes offer a predictable environment for bicyclists to 
traverse shared roads with automobiles. That said, while conventional bike lanes offer only a 
single painted line to delineate between the automobile path and bicyclist path, a buffered bike 
lane offers increased comfort by creating more space between the bicyclist and automobile 
driver. Increasingly, buffered bike lanes are being preferred over conventional bike lanes due to 
this increased space (McNeil et al., 2014). A study by Akar and Clifton (2009), however, pointed 
out that the discontinuous nature of bike lanes in general created a problem of safety and 
reliability of the network at large, regardless of whether the lanes were buffered or conventional. 
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Cycle tracks, while offering increased comfort for cyclists, also have tangible safety benefits 
such as reducing the severity of collision injuries and reducing the likelihood of collisions at 
intersections, according to multiple studies (Thomas et al., 2012; Zangenehpour et al., 2014). 
There are some exceptions, however. One study found that two-way cycle tracks were more 
likely to have more collision incidents per mile traveled compared to cycling on the street 
(Thomas et al., 2012). Additionally, two studies found that cycle tracks can increase the amount 
of cyclist collisions at or near intersections. One study cited cycle tracks as being three times 
more dangerous but also concluded that this is due to an overall increase in the number of 
cyclists (Thomas et al., 2012; Zangenehpour et al., 2014). Overall, cycle tracks on the right side 
of the street were found to increase safety and decrease collision incidents; however, cycle tracks 
on the left side of the street did not have any significant decrease compared to a street without a 
cycle track (Zangenehpour et al., 2014). According to Harris et al. (2013), cycle tracks, in 
combination with lower speeds for automobiles, were found to significantly decrease collisions 
at intersections in both Vancouver and Toronto, Canada, compared to intersections without those 
same treatments. Finally, one study by Lusk et al. (2011) purposefully studied cycle tracks in 
Montreal in an attempt to dispute the long-held idea that cycle tracks are less safe according to 
the American Association of State Highway and Transportation Officials. After studying six 
different cycle tracks in Montreal, they found that all the cycle tracks were safer for cyclists than 
had the cycle tracks not existed at all. 
 
The Dutch CROW Design Manual for Bicycle Traffic cites that accidents with bicyclists at 
intersections account for over half of all collision and, as such, require special requirements in 
order to deal with them safely (Dutch CROW, 2006). One common intersectional treatment 
designed to increase visibility and help with turning in Europe, and increasingly the U.S., is the 
bike box. According to a study by Dill et al. (2010), the number of collision incidents between 
cars and bicyclists, as well as pedestrians, decreased and automobile yielding increased where 
bike boxes were installed in Portland, OR. 

2.3 BIKE SAFETY STUDIES WITH BIKE VOLUME AND SAFETY 
PERFORMANCE FUNCTIONS 

According to the Federal Highway Administration, a safety performance function (SPF) is a 
formula that can be used to predict the amount of collision incidents per year at a specific 
location due to exposure and characteristics of the road or intersection. While SPFs have mostly 
been used for automobile traffic, development of a SPF for predicting bicycle collisions is 
limited. In recent years, a few different research studies have started to look at SPFs specifically 
for bicycles.  
 
Many studies have shown that the risks of injury to cyclists are nonlinear and dependent on the 
number of cyclists, essentially indicating a decreasing risk with increasing bicycle traffic 
(Larsson, 1993; Leden et al., 1998; Lyon and Persaud, 2002; Jacobsen, 2003; Robinson, 2005; 
Jonsson, 2005; Geyer et al., 2006; Harwood et al., 2008; Elvik, 2009; Miranda-Moreno et al., 
2011; Schepers et al., 2011; Turner et al., 2011; Carlson et al., 2018). A summary of studies prior 
to 2009 was reported by Elvik (2009). Perhaps the most well-known study in this category was 
by Jacobsen in 2003. Using data from California, Denmark, and eight other European countries, 
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Jacobsen showed that the probability of a motorist-pedestrian or motorist-cyclist crash declines 
with the approximately -0.6 power of the number of persons walking or cycling. In other words, 
as the number of people walking and cycling increases, the less likely they are to be injured by 
motorists. This suggests a “safety in numbers” phenomenon (Jacobsen et al. 2003).  
 
Most recently, Nordback et al. (2014) applied a bicycle-specific SPF to the city of Boulder, CO. 
It was the first of any such study conducted in the United States. Using their estimated SPFs, 
Nordback et al. found that bicycle volumes had a direct impact on the number of bicycle 
collisions in intersections, primarily in that more bicycles meant fewer collisions per cyclist. 
That said, it was made clear in the study that this specific SPF was not meant to be a 
generalization of all U.S. cities, but rather specific to Boulder. A study by Turner et al. (2011) 
applied bicycle-specific SPFs in both the Australian city of Adelaide and the New Zealand city 
of Christchurch. There, Turner et al. conducted a before-and-after study on the use of bicycle 
facility treatments with the use of SPFs. Their research found that the effect of bicycle lanes 
depended on the standards with which they were built (Turner et al., 2014). They also found that 
colored bicycle lanes decreased collisions by as much as 39percent. However, Turner et al. did 
not take note of whether bicycle volumes were higher after bicycle safety features were installed. 
A third study by McArthur et al. (2011) used SPFs to calculate the crash prediction rating of 
schoolchildren who were riding their bikes to and from schools. In it, the authors looked at Safe 
Routes to School (SRTS) programs and combined that with SPFs where SRTS had funded 
additional infrastructure and educational improvements. Specific results found that bicycle 
collisions increased with the number of students, and that schools on smaller streets had more 
collisions than schools on larger arterials. A recent study by Thomas et al. (2017) developed 
SPFs for three high-frequency and high-severity bicycle intersection crash types – total bicycle 
crashes at intersections, crashes in which the bicyclist and driver were traveling in the opposite 
directions, and crashes in which the bicyclist and driver were traveling perpendicular to each 
other . Factors that were significant in all three models included arterial classification, larger 
number of lanes, and two-way center turn lanes. The findings also revealed that pedestrian 
volume had a curved relationship with crashes, indicating that as the pedestrian volume increased 
above some threshold, a decreasing relationship with bicycle crashes was observed (Thomas et 
al., 2017). 
 
Outside of SPF-specific studies, one study used a Bayesian model to research bicycle injury 
occurrence and bicycle safety at signalized intersections in order to find factors associated with 
volumes of bicyclists and injuries related to them (Strauss et al., 2012). In their methodology, 
Strauss et al. found that the flow of bicyclists and motor vehicles as well as geometric design of 
streets, traffic controls, and other built environment characteristics all contribute to bicycle 
injuries through intersections and corridors. An increase of 10percent volume of right- and left-
turning automobile traffic was found to increase bicycle injury rates by 2.4percent and 
1.9percent, respectively.  Additionally, Strauss et al. found that low cyclist volume corridors 
through Montreal were the worst in terms of injury rates. In conclusion, the Bayesian model 
found that bicycle volumes had the greatest impact on cyclist injury and safety through both 
corridors and intersections (Strauss et al., 2012). Another study by Shepers et al. (2013) created a 
framework for road safety and applied it to bicycle safety. They looked at a number of safety 
studies and used their created framework to test the validity of those studies  One particular 
section found that studies on traffic volumes and risk were nonlinear using a framework for road 
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safety and that the type of cyclists (e.g., women, elderly, etc.) plays a larger role in bicycle safety 
than some studies have suggested . Shepers et al. suggest that future studies need to explore the 
causal mechanisms of cyclists, which could help explain the link between bicycle usage and risk. 
 
It is worth highlighting that Elvik completed a literature review of the nonlinearity of risk in 
bicycle transportation that covered volume of bicyclists. Elvik found that as the number of 
pedestrians and cyclists goes up, the risk involved goes down. Additional studies looked at by 
Elvik found that if automobile drivers switched to walking or bicycling, the overall number of 
collisions would go down (Elvik, 2009). 
 
Finally, a dissertation by Lars Ekman (1996) analyzed the effect of treatments in flows on safety 
and accidents. Ekman came to the conclusion that moving more bicyclists from smaller streets to 
larger arterials can actually be beneficial overall and that the use of SPFs would enhance any 
safety study in the future. Another dissertation by Thomas Jonsson (2005) looked at creating a 
model for predicting accidents with special emphasis on vulnerable road users (VRU), most 
often bicyclists and pedestrians. In it, Jonsson was able to create a model for successfully 
predicting 71-81percent of the systematic variation of accidents involving VRUs. 

2.4 SUMMARY 

Both population- and travel-based exposure measures have been used in the literature to study 
the risk associated with cycling. According to McAndrews et al. (2013), risk estimated based on 
population-based exposure measures reflects overall societal risk while estimates based on travel 
exposure measures reflect travel risk. Trip-based measures normalize speed across modes, 
whereas the distance-based measures reflect the slower speeds of active transportation modes 
(McAndrews et al., 2013). Additionally, facilities have been studied extensively as they relate to 
bicycle safety. Bike lanes offer a predictable space for bicyclists and automobiles to travel 
together but are otherwise considered not as preferable as buffered bike lanes or as safe as cycle 
tracks (McNeil et al., 2014; Thomas et al., 2012; Monsere et al., 2014; Zangenehpour et al., 
2014). Alternative bicycle facility treatments, such as bike boxes and median refuge islands, 
were also found to be important safety features, though literature on these subjects needs to be 
expanded (Dill et al., 2010). Four separate studies used SPFs to analyze bicycle safety and came 
away with varied results. One study by Nordback et al. (2014) found that bicycle volumes in 
Boulder had a direct impact on bicycle collisions. Another study used SPFs to gauge the 
effectiveness of bicycle treatments and found that colored bicycle lanes decreased collisions by 
39percent (Turner et al., 2011). A third study used SPFs to look at the effectiveness of the SRTS 
program and treatments involved with those areas and found that bicycle collisions increased 
with the amount of students and that schools located on local streets had higher frequencies of 
crashes that larger streets (McArthur et al., 2011). A recent study developed SPFs for common 
bicycle-vehicle crash types in Seattle (Thomas et al., 2017). A final study applied a Bayesian 
model to cyclist injuries at intersections and corridors and found similar results, namely that 
bicycle volumes had the greatest impact on collisions and injuries (Strauss et al., 2012).  
 
As the literature review revealed, studies involving the use of the SPFs are limited, and at the 
time of writing, the authors are not aware of any study that has developed SPFs for bicycle 
crashes and bicycle volume for a U.S. city along road segments. More research is needed to 
comprehensively understand cyclist safety. 
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3.0 CRASH DATA EXPLORATION 

Prior to choosing locations to study, the team reviewed existing data sources by community in 
order to find study areas with consistent data, or at least to identify one area with sufficient data 
for a bicycle-safety study. Three main types of data are needed for the development of bicycle-
specific crash relationships: crash data, exposure data, and data about the environment where 
crashes can occur (e.g., facility types, land uses, weather, etc.). This section focuses on the first 
of these: crash data. Within the non-fatal crash data set involving cyclists, bicycle crashes 
involving motorists are the specific focus of this study, as these crashes have the potential to be 
more severe and more commonly reported than bicycle-only crashes, (Schepers, 2011). Our 
research team used non-fatal cyclist crash data from eight different communities: Arlington, VA 
(city/county); Bellingham, WA (city); Boulder, CO(city); Denver, CO (city/county); 
Minneapolis and St. Paul, MN (cities); Philadelphia, PA (city/county); Portland, OR (city); and 
San Diego, CA (county). Our research team examined these data for issues pertaining to quality 
and consistency. To date, there is little to no research about how bicycle crash data are collected, 
organized, and reported.  

 In this section, we aim to show the different ways in which communities record their non-
fatal crash data for cyclists, along with a discussion of the strengths and weaknesses of the data 
and the collection process, with the overall goal of bringing attention to the issues and provide 
recommendations for improvement. First, we offer a brief review that identifies the pertinent 
variables that have been used in previous crash studies and which would be relevant for inclusion 
in crash data sets. Next, the background section reviews the current standardized methods to 
collect fatality data. Then, using the crash data from selected communities, we highlight the 
limitations of current crash data collection processes. Finally, we conclude by offering 
recommendations on how the crash data collection could be standardized and improved. This 
section contributes to the literature on bicycle data safety needs and shows that a unified bicycle 
crash collection method is needed to advance research-driven solutions for combatting bicycle 
crashes around the country. 

3.1 BACKGROUND 

Bicycle crashes have been studied by many researchers around the world and increasingly in the 
United States. Many of these studies helped individual areas or regions identify and rectify issues 
within their bicycle infrastructure. A number of variables within the crash data sets were found to 
be important predictors of motorist-cyclist crashes in literature. Table 3.1 shows examples of 
previous research articles that found these same variables as significant. 
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Table 3.1: Motorist-cyclist Crash Data Fields from Literature 
 

Field Type Field Variable Studies which found this field to be  
associated with motorist-cyclist crashes 

Environmental Lighting 
Weather 
Intersection Type 
Speed Limit 
Traffic Control Device 

Zangenehpour et al., 2015 
Yan et al., 2011 
Klop et al., 1999 
Allen-Munley et al., 2004 
Strauss et al., 2015 
Reynolds et al., 2009 
Turner et al., 2011 

Crash Specific Collision Type 
Severity 

Wang et al., 2015 
Klop et al., 1999 
Allen-Munley et al., 2004 

Time Year 
Month 
Day 
Hour 

Wang et al., 2015 
 

 
The variables shown in Table 3.1 are important predictors of motorist-cyclist crashes (though this 
is not an exhaustive list), and thus, crash data sets that include these variables are more likely to 
lead to more accurate prediction of bicycle crashes and identification of bicycle safety-specific 
countermeasures. For this reason, these variables will be specifically identified in the data sets 
included in this study: year, month, day, hour, intersection type, collision type, lighting, weather, 
speed limit, traffic control device, and collision severity. 
 
3.1.1 Motorist-cyclist Crash Data Standards and Tools 

Fatal crashes across the U.S. involving all modes are collected in a standardized manner and 
reported at the national level using the Fatality Analysis Reporting System (FARS). FARS is a 
national database run by the National Highway Traffic Safety Administration (NHTSA), but it 
only collects fatal incidents, which account for a small percentage of overall bicycle crashes 
(NHTSA, 2015). For example, fatal crashes are only 2percent of the crashes studied in this 
paper. Additionally, FARS is still heavily geared towards automobile crashes, thus making the 
recording of bicycle crashes problematic. However, no similar U.S. database yet exists for non-
fatal crashes either for bicycles or automobiles, though many of the problems highlighted in this 
paper are bicycle-specific.  
 
While crash report forms at the state level contain information on where, when, and whom the 
crash impacts, they tend to exclude any information regarding the sequence of events preceding 
the crash. This hinders the development of countermeasures due to insufficient details about the 
crashes (Harkey et al., 2006). Hence, the Pedestrian and Bicycle Crash Analysis Tool (PBCAT) 
was developed by the NHTSA as a tool for “typing” bicycle and pedestrian crashes. The 
objective of the crash typology is to define each crash type by a specific sequence of events, 
precipitating actions, predisposing factors and characteristic populations, and/or locations that 
can be targeted for interventions (Harkey et al., 2006). Table 3.2 shows the motorist-cyclist crash 
data types specified by PBCAT. These crash data types are important variables that help 
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researchers and practitioners understand the contributing causes of these crashes. For example, 
the city of Boulder reports that the most common motorist-bicyclist serious injury collision types 
(64percent) involved a motorist driving out (34percent) or turning (30percent) into the path of a 
cyclist, and Boulder is now using this information to choose appropriate countermeasures (City 
of Boulder Transportation Division, 2016). 

Table 3.2: Example PBCAT Motorist-Cyclist Crash Data Types (Harkey, et. al, 2006) 

General Crash Types Specific Crash Types 

Turning Error Motorist Turning Error (Left Turn; Right Turn; Other) 
Bicyclist Turning Error (Left Turn; Right Turn; Other) 

Loss of Control Bicyclist Lost Control (Mechanical Problems; Oversteering, Improper Braking, 
Speed; Alcohol / Drug Impairment; Surface Conditions; Other / Unknown) 
Motorist Lost Control (Mechanical Problems; Oversteering, Improper Braking, 
Speed; Alcohol / Drug Impairment; Surface Conditions; Other / Unknown) 

Failure to Yield – Sign-
Controlled Intersection 

Motorist Drive Out - Sign-Controlled Intersection  
Bicyclist Ride Out - Sign-Controlled Intersection 
Motorist Drive Through - Sign-Controlled Intersection 
Bicyclist Ride Through - Sign-Controlled Intersection 
Multiple Threat - Sign-Controlled Intersection 
Sign-Controlled Intersection - Other / Unknown 

Failure to Yield – Signalized 
Intersection 

Motorist Drive Out (Right Turn on Red; Signalized Intersection) 
Bicyclist Ride Out - Signalized Intersection  
Motorist Drive Through - Signalized Intersection  
Bicyclist Ride Through - Signalized Intersection  
Bicyclist Failed to Clear (Trapped; Multiple Threat; Unknown) 
Signalized Intersection - Other / Unknown 

Crossing Paths Crossing Paths (Uncontrolled Intersection; Intersection - Other / Unknown) 
Motorist Turn / Merge Motorist Left Turn (Same Direction; Opposite Direction) 

Motorist Right Turn (Same Direction; Opposite Direction) 
Motorist Right Turn on Red (Same Direction; Opposite Direction) 
Motorist Turn / Merge - Other / Unknown; Bicyclist Left Turn - Same Direction 

Bicyclist Turn / Merge Bicyclist Left Turn - Opposite Direction 
Bicyclist Right Turn (Same Direction; Opposite Direction) 
Bicyclist Ride Out - Parallel Path 

Parking / Bus-Related Motorist Drive In / Out - Parking; Bus / Delivery Vehicle Pullover 
Motorist Overtaking Bicyclist Motorist Overtaking (Undetected Bicyclist; Misjudged Space; Bicyclist 

Swerved; Other / Unknown) 
Bicyclist Overtaking Motorist Passing on Right; Passing on Left; Parked Vehicle; Extended Door; Other / 

Unknown 
Head-On Head-On (Bicyclist; Motorist; Unknown) 
Parallel Paths Parallel Paths - Other / Unknown 
Failed to Yield–Midblock Bicyclist Ride Out (Residential Driveway; Commercial Driveway / Alley; Other 

Midblock; Midblock - Unknown) 
Motorist Drive Out (Residential Driveway; Commercial Driveway / Alley; Other 
Midblock; Midblock - Unknown) 
Multiple Threat - Midblock; Crossing Paths - Midblock - Other / Unknown 

Other Bicycle Only; Motorist Intentionally Caused; Bicyclist Intentionally Caused; 
Backing Vehicle; Play Vehicle-Related; Unusual Circumstances; Non-Roadway; 
Unknown Approach Paths; Unknown Location 
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While FARS and PBCAT have standardized some aspects of the crash data process, they have 
their limitations to being adopted by jurisdictions for non-fatal crashes. FARS is for fatal crashes 
and therefore may need some adaptation to include non-fatal crashes. PBCAT in its present state 
is designed to analyze crash data after it has already been recorded in various regionalized 
systems and would need to be integrated into on-the-scene crash reports to work seamlessly. 
Thus, no standards currently exist for recording non-fatal cyclist crashes, leading to many 
different approaches in collecting this data. The following sections review the non-fatal crash 
data obtained from the eight communities and describe limitations within the data. 
 

3.2 STUDY COMMUNITIES 

In this study, eight different city and county crash data were assessed. Table 3.3 shows the 
population estimates for each of these locations along with fatal and non-fatal crashes. These 
data were acquired through multiple government agencies of varying hierarchy (local and state) 
within their respective regions. Arlington County, Bellingham, Minneapolis/St. Paul, 
Philadelphia, and Portland’s data were acquired through their respective state transportation 
departments. Boulder and Denver’s data were acquired from the Denver Regional Council of 
Governments (DRCOG). San Diego County’s data was acquired through the California Highway 
Patrol’s Statewide Integrated Traffic Records System (SWITRS).  
 
These locations varied in terms of population, with Bellingham having the lowest population of 
80,867 residents, and San Diego County with the highest population of 3,095,013 residents. 
Table 3.3 shows that Philadelphia, San Diego, Minneapolis/St-Paul, and Portland, on average, 
had significantly higher numbers of non-fatal crashes per year compared to Arlington County, 
Bellingham, and Boulder. One contributing factor could be greater numbers of residents in these 
communities. While crashes per year per population are reported in Table 3.3, this may not be a 
good metric for comparison due to differences in exposure (some communities have more 
driving or more cycling than others) and differences in crash reporting (some communities have 
higher rates of motorist-bicyclist crash reporting than others).  
  
The fact that the number of fatal crashes per year is less than four for all of the communities 
studied demonstrates fatalities alone are not sufficient for safety analysis at the community, area, 
corridor, or facility level. This is why non-fatal crashes are important for understanding bicycle 
safety at the facility level. 
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Table 3.3: Crash Data for Each Community 
 

 Non-fatal Bicycle-related Crashes  

Community 
2010 Population 

(U.S. Census 
Bureau, 2010) 

Years (Non-
Fatal) 

Total Non-
Fatal 

Average 
per Year 

Crashes 
per Year 

per 100,000 
population 

Bicyclist 
Fatalities 
per Year 

Arlington 207,627 2010-2015 239 40 19 0.2 
Bellingham 80,867 2001-2015 499 33 41 0.2 
Boulder 97,468 2006-2012 893 99 101 0.6 
Denver 600,025 2003-2009 1480 211 35 1.3 
Minneapolis/St. 
Paul 667,646 2005-2014 3784 378 57 1.1 

Philadelphia 1,526,006 2010-2014 2675 535 35 3.3 
Portland 583,789 2009-2012 1271 318 54 2.2 
San Diego 
County 3,095,313 2001-2014 6493 464 15 3.8 

 
The crash data obtained from these communities was processed for future safety analyses. As a 
part of this process, several issues were encountered with the data and these are described in 
detail below. 
 
3.2.1 Observed Issues with Crash Data 

An examination of crash data across the eight locations revealed the following issues: 
inconsistent data formats, differences in crash data fields between communities, and differences 
in data within communities from year to year. Other issues included under-reporting of crashes 
and the use of motor vehicle-specific crash collection forms. Each of these issues are discussed 
separately below. 
 
3.2.2 Inconsistent Data Formats 

Two differences were observed at the onset of the crash data retrieval process: a) data was made 
available via different avenues (e.g., email, password-protected sites, nonpassword-protected 
sites, and FTP sites); and b) data was available in varying electronic formats (e.g., Microsoft 
Excel files with and without coordinates, Microsoft Access database, and GIS shapefiles). 
Arlington County, Bellingham, and San Diego County’s data came in an Excel file format. 
Arlington County’s data came with coordinates, but Bellingham and San Diego County’s data 
required geocoding. Boulder, Denver, Minneapolis/St. Paul, and Portland’s data were all made 
available as GIS shapefiles. Boulder and Denver’s GIS shapefiles were made available off the 
DRCOG website. Minneapolis/St. Paul’s GIS shapefile was emailed to us directly from 
MNDOT. Portland’s GIS shapefile was available via a public FTP site. Philadelphia’s data were 
sent to us via an encrypted email, which required a Commonwealth of Pennsylvania account. 
The data were found in an FTP site in Microsoft Access format, of which about half required 
further geocoding. 
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3.2.3 Differences in Data Fields Between Communities 

Table 3.4 shows the crash data fields that are collected across our study communities. While 
there are some consistencies between them such as the year and month of the crash, every other 
type of crash data field has varying degrees of consistency. 
 
Aside from Philadelphia, every city had missing fields that would be of interest to the road safety 
research community. The most common type of missing field was the traffic control device, with 
five of the eight regions omitting it entirely. It is also worth pointing out that missing fields 
might not always be missing entirely from a data set. Much of our data came from publicly 
available sources and, as such, some fields may have simply been purposely omitted from those 
publicly available sources. For example, the city of Boulder uses PBCAT to crash type their 
bicycle and pedestrian crashes, but such data are not provided in the data set we received from 
their metropolitan planning organization (MPO).  
 
Even if two or more communities recorded the same basic data fields, there were often 
discrepancies regarding how each field was collected. For example, Portland and Philadelphia 
record their collision severity differently with a different amount of fields for each. Portland 
records its crash severity as either a fatal crash, non-fatal injury crash, or PDO crash while 
Philadelphia recorded it as: not injured, killed, major injury, moderate injury, minor injury, 
injury/unknown severity, and unknown if injured. Crash severity was entirely dependent on the 
scale used by the various regional reporting agencies and was equally dependent on the use of a 
data dictionary to figure out how a comparison could be made. This leads further to the question 
of how an officer might differentiate between a minor, moderate, and major injury. The 
thresholds are nebulous and different officers might classify the same crash injury differently. 
  
Intersection type had the most discrepancies among data sets, with Minneapolis/St. Paul 
recording 17 different intersection types. Meanwhile, San Diego County recorded their 
intersection type as either yes, no, or unknown. Comparing such data across locations would 
require paring down each other region’s intersection type data to a simple “yes, no, or unknown.” 
This would result in the loss of potentially useful information since four-way intersections have 
been found by others to be more associated with motorist-bicyclist crashes than three-way 
intersections (Hauksson, 2014). San Diego, for its part, is unusual in that most of its crashes are 
recorded as non-intersection related. Additionally, since San Diego’s data is county data from a 
statewide organization, their “yes, no, or unknown” issue might already have been caused by the 
paring down of inconsistent city-level data. Almost every other field required a similar amount 
of manipulation in order to accurately compare the data fields from region to region. Lighting 
conditions contained differences between whether sunrise and sunset were the same category or 
different, or whether there was mention of streetlights being on or off for dark periods of the day. 
Weather data contained discrepancies regarding whether cloudy conditions were recorded or not, 
or if snow, rain, and sleet were recorded with each other or as separate weather incidents. Figure 
3.1 shows how the study communities compare with the “lowest common denominator” data.  
Note that cities that did not have data presented are not reflected in the graphs. 
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Table 3.4: Crash Data Variables Collected in Study Areas 

* Boulder collects crash type data using PBCAT but it is not available publicly online.

Community 

Time Fields Crash Fields Environment Fields 

Year Month Day Hour Crash 
Severity 

Collision 
Type Lighting Weather Speed 

Limit 
Traffic 
Control Intersection 

Arlington X X X X X X 
Bellingham X X X X X X X 
Boulder* X X X X X X X 
Denver X X X X X X X X 
Minneapolis/St. 
Paul X X X X X X X X X 

Philadelphia X X X X X X X X X X X 
Portland X X X X X X X X X X 
San Diego 
County X X X X X X X X X 
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Figure 3.1: Percent of Crashes with Intersection Type, Lighting, and Weather 
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The only data fields that required no manipulation in order to draw comparisons were time-
based. Year of crash, month of year, day of week, and hour of day were all recorded in similar, 
standardized formats allowing for conclusions to be drawn fairly easily between each region. 
Additionally, speed limit, when available, also proved to be fairly standardized across each city 
as, even if a city did not have a specific posted speed limit with crashes, comparisons were still 
able to be drawn overall. 
 
Data dictionaries that provide information to the user about the variables in the crash data set 
also varied between communities. San Diego County had a data dictionary that defined various 
numbered scales, but not what the actual definitions were for specific named values. 
Minneapolis-St. Paul’s data dictionary was a single page Word document with a very basic 
description to go with value fields. Portland’s data dictionary was a 191-page document that 
gave specific definitions for each field as well as instructions on how the data should be read or 
interpreted. The range in data dictionary thoroughness from detailed to minimalistic poses a 
challenge to analyze and compare the data. 
 
3.2.4 Differences in Data Coding Within Communities 

One other interesting problem occurred in three of the eight study communities. Discrepancies 
were not only found in how and what was collected, and how the data was coded, but also in an 
individual community’s year-over-year data. This created problems in not only comparing data 
between different regions, but also in comparing data within the same region from one year to 
the next. 
  
Three communities suffered from this specific data problem: Boulder, Denver, and Portland. In 
Boulder, each year from 2004-2012 was recorded in a different manner. Denver’s data was 
recorded in a different manner for each year from 2004-2009 and then from 2010-2015 in a new, 
albeit consistent, manner. Portland’s data was recorded in a different manner for 2007-2008 and 
then again in each year from 2009-2012.  
 
Working with these three communities’ data sets required significant manipulation of data from 
year to year in order to perform basic comparisons. This might lead to fields being left out due to 
a lack of coordination over time. This also led to an increase in confusion and manipulation of 
data when comparing these three specific communities to the other five regions. 
 
It is worth mentioning that improvement in the recording process is something that does happen 
over time and that iterations are to be expected. However, data recording iterations, which do not 
preserve consistency with previous fields, make worthwhile safety research increasingly 
challenging. A good example of iterations in data recording over time with few barriers to 
comparison is the FARS database, which includes former codified data fields with new ones in a 
single document allowing researchers to easily change or use older data. 
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3.2.5 Underreporting 

One issue that could potentially impact many safety analyses is the underreporting of crashes. 
Many states have laws indicating that a crash may be unreported if it is a property damage only 
(PDO) crash with no injuries or fatalities and the damage to property is below a certain monetary 
threshold. Additionally, underreporting could occur due to the reluctance of involved parties to 
interact with law enforcement or be hospitalized. Some communities may have lower 
underreporting rates than others. Communities that work the hardest to overcome underreporting 
may appear to have higher numbers of motorist-cyclist crashes while, ironically, they may 
actually have fewer crashes than other communities but are simply better at reporting them.  
 
Studies have found that pedestrian and bicycle crashes are underreported (Elvik and Mysen, 
1999; Medury et al., 2017) and especially when there are no injuries, little property damage and 
only one party is involved (Stutts and Hunter, 1998; Sciortino et al., 2005; Loo and Tsui, 2007).  
Integrating hospital data with the crash reports would help provide a more complete picture of 
motorist-cyclist crashes. However, due to privacy laws governing medical records in the U.S., 
such coordination could be challenging. Sweden, for example, integrates the information from 
the police and hospital data into a single database – Swedish Traffic Data Acquisition (Strada). 
The inclusion of the hospital data addresses the issue of underreporting of crashes. 
 
3.2.6 Motor-vehicle-specific Reporting Forms 

Another issue relevant to motorist-cyclist crashes is that the automobile-oriented data form 
precludes collection of bicycle-specific crash types. Figure 3.2 shows a typical crash form from 
Washington state. Every region that we examined used some variation of an automobile-oriented 
recording database in order to record their bicycle crash incidents. This created problems for a 
number of the regions as the automobile-oriented recording database simply did not match up 
with the specifics of a bicycle crash. In fact, a study done by Berkow et al. in 2017 reviewed all 
state collision reporting forms in the U.S. to determine how each form was capturing locational 
information about cyclist-involved collisions in report fields. The study revealed that many state 
collision reporting forms do not provide the level of detail for bicycle-involved collision typing, 
and that there are several ambiguities in collision description. For example, San Diego County 
recorded its collision type data as such: head-on, sideswipe, rear end, broadside, hit object, 
overturned, vehicle/pedestrian, other, and not stated. Of San Diego County’s recorded bicycle 
crashes, 291 were marked “overturned” but there was no mention of whether this was for the 
bicycle or if there were 291 overturned vehicles hitting cyclists. This makes figuring out what 
actually occurred in the crash more challenging, and these recording practices seems to be 
occurring across the country.  
 
Dooring is a type of motorist-cyclist crash in which the bicyclist is struck by a car door opening 
into the bicycle lane. This often occurs in urban areas, where bicycle lanes are placed 
immediately adjacent to parked cars. An example of how this crash type has turned fatal is when 
a cyclist who has encountered an open door is thrown or diverted into the motor vehicle travel 
lane and struck by a moving vehicle. While cities like Chicago have started recording data on 
this specific crash type, these data were not recorded in the data sets highlighted in this paper. 
This lack of crash typing could hamper safer and efficient design of separated bicycle 
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infrastructure. Though the city of Boulder does use PBCAT, which does record this type of data, 
this crash typing was not included in the DRCOG data set and thus is missing from the most 
accessible, publicly available data on crashes. Table 3.5 shows a sample of how useful this type 
of crash typing can be in identifying crash scenarios that can be remediated by engineering 
solutions. 
 

Table 3.5: PBCAT Crash Types in Boulder 
 

Top 5 PBCAT crash types in Boulder 2008-2014 
Percent Crash Group Description 

12% Motorist Failed to Yield - Sign-Controlled Intersection 

8% Motorist Failed to Yield - Signalized Intersection 
12% Motorist Left Turn / Merge 
12% Motorist Right Turn / Merge 

7% Motorist Failed to Yield - Midblock 

 Source data provided by City of Boulder 

 
 
Data quality is also a key challenge that needs to be ensured with cyclist crash data at all levels. 
Law enforcement officers have many duties, need to prioritize emergency calls, and if their law 
enforcement department is not using the data collected, may not see the direct impact of quality 
data collection. Some officers may not be as familiar with bicycle-specific issues as others, 
which may lead to bias. Another issue is that bicyclists as vulnerable road users are more likely 
to be incapacitated in a collision with a car and thus less likely to be able to report their account 
of the crash to law enforcement officials. 
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Figure 3.2: Police Traffic Collision Report Form from Washington State 
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3.3 SUMMARY 

In order to improve bicycle safety research, the U.S. needs consistent and quality data being 
collected throughout its major cities and metropolitan areas. As shown in this section, bicyclist 
crash data is currently being collected and recorded in an inconsistent manner, often with 
missing information and with data recording methods used primarily for automobiles. Between 
agencies, there are inconsistencies in the data dictionaries and their respective definitions as well 
as the amount of data fields being recorded by each agency, particularly along small-large region 
lines. Bicycle crashes may also be underreported based on the severity of the crash and whether 
there has been property damage above a specific threshold or if the police were ever called in the 
first place. Finally, there is a distinct lack of bicycle-specific crash types represented in the data, 
of particular note being “dooring” crashes. To remedy these issues, we propose the following 
recommendations: 
 
Standard nationwide formats for motorist-cyclist crash data in the U.S. (such as PBCAT) should 
be used. The current method of using different state-by-state or region-by-region recording 
methods paints an inconsistent picture and makes nationwide research on the subject of bicycle 
safety from motor-vehicle crashes impractical. This is particularly true for communities that are 
already working with limited data of their own due to lower volumes of cyclists than automobile 
drivers. Standardization could be further informed by PBCAT as a potential reference system, 
but some basics fields that should be included are listed below: 
 

• Intersection Type – A method for determining where specifically the bicyclist is with 
relation to the intersection, including: type of intersection (four-way, t-intersection, 
driveway, roundabout, etc.) and method of approach to the intersection by way of facility. 

• Crash Type – Bicycle-specific crash types with definitions that inform whether the 
bicyclist or the motorist made the error and what the specific error was. For example: 

o Motorist Right Turn – Same Direction 
o Bicyclist Ride Through – Signalized Intersection 
o Bicyclist Overtaking Vehicle – Extended Door 

• Crash Severity – A standardized crash severity scale that would allow for quick 
comparisons to be made between communities and would have a set standard for PDO 
crashes. This could include coordination between hospital records and crash records for a 
more consistent reporting of severity when an injury is involved. 

 
Not only could PBCAT be used as a reference system, it could also be directly embedded within 
a police officer’s recording database. Police officers are already increasingly moving towards 
electronic interface recording systems (often internet enabled) that help with data consistency on 
a local level. Integrating these electronic systems with PBCAT, however, could prove to be an 
effective method of standardizing motorist-bicyclist crashes. 
 
In addition to creating a national standard and database for non-fatal crashes, including motorist-
cyclists crashes, integrating crash report databases with hospital records may yield additional 
data. It has been documented that motorist-bicycle crashes are underreported even when an 
injury is involved (Elvik and Mysen, 1999; Medury et al., 2017). The sparse number of reported 
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crashes would benefit from the addition of these unreported crashes present in hospital and 
emergency responder data. 
 
Future research on exposure and volume data are needed to more accurately illuminate the 
impact that a lack of data is having on bicycle crash safety research. Exposure and volume data 
have their own implications with regards to bicycle safety, but data regarding exposure and 
volume are also recorded in an inconsistent manner across municipalities. Future research would 
combine this section’s analysis with municipal exposure and volume data to create a clearer 
picture of the overall bicycle safety data needed to accurately research bicycle crashes in this 
country. Similarly, data on when bicycle facilities are installed and where they exist are also 
important to studying bicycle safety. There is currently no national standardized data set of 
bicycle infrastructure. 
 
Without improvements in data consistency and quality, studies of bicycle safety will continue to 
be inadequate. Additionally, without accurate research studies, bicycle safety facilities will never 
be ranked as either a four- or five-star CMF, which will inhibit the use of funds for bicycle-
related projects. With bicycle crash data already comprising a small segment of a city’s crash 
data, communities will need accurate studies from a national pool of data if they wish to expand 
their existing facilities and encourage more ridership. 
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4.0 DATA AND METHODS 

An important insight in the pursuit of improved bicycling safety is a better understanding of what 
factors are associated with motorist-bicyclist collisions. As mentioned previously, safety 
performance functions (SPFs) can be developed for cyclists to account for effects such as “safety 
in numbers” and its relationship to risk.  

Existing bicycle SPFs primarily focus on intersections, which is where the majority of bicycle 
crashes occur (Nordback et al., 2014). However, no bicycle SPFs in the U.S. utilizing bicycle 
volume data exist for segments. This section adopts methods from the Highway Safety Manual 
(HSM) used for motor vehicle SPFs in order to develop bicycle-specific SPFs for roadway 
segments in Boulder, CO (AASHTO, 2010). In order to account for the “safety in numbers” 
effect, both vehicle volume and bicycle volume data are used in the model. This is a preliminary 
effort at developing a bicycle-specific SPF for segments in the U.S. that utilizes bicycle volumes, 
is an important first step towards further understanding bicyclist safety, and may inform future 
versions of the HSM. 

This chapter presents a description of the data and methods used in this study to create bicycle-
specific SPFs for road segments in Boulder. 

 

4.1 SITE LOCATION 

Boulder was chosen for this study because of its data availability. It also has a high commute-to-
work bicycle mode share (10.8percent) compared to other U.S. cities (McKenzie, 2014). 
Additionally, Boulder has an extensive counting program, dating back to the early 2000s, 
comprised of both manual short-term counts and permanent counters, thus allowing for safety 
analyses. Annual average daily bicyclists (AADB) estimates were developed by expanding the 
short-duration counts using factors developed from the permanent counters. 
 
Although the majority of motorist-bicyclist crashes (65percent) in Boulder occur at intersections, 
these have already been studied (Nordback et al., 2014). The 32percent that occur along segments 
have not received much attention. Therefore, the objective of this study is to model the non-
intersection crashes as a function of geometric and traffic variables.   
 
Various data were gathered for the safety analysis. The data types assembled included the crash 
data, bicycle, pedestrian and auto volumes, as well as supplemental data such as land use, 
population and employment density, educational attainment, and bicycle facilities. We describe 
each of these in more detail below. 
 
4.1.1 Crash Data 

Crash data for Boulder were gathered for 2006-2013 from the Denver Regional Council of 
Governments (DRCOG). The DRCOG dataset includes 717 non-fatal, motorist-bicyclist crashes. 
Of these, 232 (32percent) were non-intersection and non-intersection-related crashes. Of those, 
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174 occurred on the 346 road segments for which the bicycle, pedestrian and motor vehicle 
volumes and facility type variables are known (i.e., 0.5 motorist-bicyclist crashes per segment on 
average). The crashes analyzed are all non-fatal crashes including severe and PDO crashes. From 
2006-2013, three bicyclist fatalities occurred within Boulder.  
 
Many non-intersection crashes without latitude and longitude were still initially geocoded to an 
intersection. This anomaly was corrected by re-mapping crashes to road segments using the 
direction noted in the data set for the primary vehicle causing the crash (Pendleton, 2016). Of the 
174 crashes studied, 2006 and 2013 were the two years with the most crashes. The highest 
proportion of these crashes occurred in September (17 percent), followed by August (14percent) 
and April (11 percent). Since this study only analyzed crashes that were not intersection related, 
the location of these crashes was further analyzed. Of all crashes, 53 percent were driveway-
access related, 43 percent were non-intersection related, and 4 percent were alley-related crashes. 
Most of the crashes also occurred on straight, level grade (79 percent), on dry pavement (73 
percent), during daylight (82 percent), and during no adverse weather conditions (66 percent). 
Table 4.1 shows descriptive statistics associated with these crashes. 
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Table 4.1: Summary Statistics for the Non-fatal, Motorist-bicyclist Crashes Studied (only crashes 
on the 174 segments with traffic volume data are included) 

Descriptor 
category Descriptor Crashes 

Road Description Driveway-Access Related 53% 
Non-Intersection 43% 
Alley Related 4% 

Contour Straight-on Level 79% 
Straight-on Grade 18% 
Curve-on Grade 2% 
Unknown 1% 

Condition Dry 73% 
Wet 24% 
Muddy 2% 
Snowy 0.5% 
Unknown 0.5% 

Lighting Daylight 82% 
Dawn or Dusk 6% 
Dark – Lighted  10% 
Dark – Unlighted 1% 
Unknown 1% 

Weather None 66% 
Snow/Sleet/Hail 3% 
Wind 1% 
Unknown 30% 

 
4.1.2 AADB 

The short-duration bicycle counts were obtained from the city of Boulder’s turning movement 
counts that were conducted during the AM, mid-day, and PM peak periods. First, the morning-
midday index (AMI) was computed using the following formula (Miranda-Moreno et al., 2013). 

 

𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑉𝑉𝑎𝑎𝑎𝑎
𝑉𝑉𝑎𝑎𝑚𝑚𝑚𝑚

 

Where: 
Vam = volume between 7:45 – 8:45 am and 
Vmid = volume between 11:45 am – 12:45 pm 
 
 

The AMI is used to determine if traffic patterns are utilitarian or recreational. Higher AMI values 
indicate commute patterns, and lower values indicate recreational patterns. To expand the short-
duration counts into AADB values, three continuous count sites within Boulder were used. The 
AMI was also computed for these sites in order to classify them into commute and recreational 
sites to develop the appropriate factors.  Only one site (US-36) exhibited non-commute pattern, 
whereas the other two sites (13th Street and Folsom Street) had commute patterns. Factors for 
each day of the short-duration counts were computed by dividing the sum of the short-duration 
counts taken on that day by the AADB computed using the continuous counts. These factors 
were then used to expand the short-duration counts to AADB, as shown below. 
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AADB = ckp ∗ Fdf 
 

Where: 
ckp = the known bicycle count for sum of three peak hours 7:45-8:45 a.m., 11:45 
a.m.-12:45 p.m., and 4:45-5:45 p.m. (8,12,5) on a Tuesday, Wednesday, or 
Thursday (TWorR) 
Fdf = adjustment factor for bicycle traffic for a given date, d, for a factor group, f. 
 

 
Adjusted AADB = AADB (2013-Y) * G 

 
Where: 

G = the growth factor per year, assuming linear growth (for Boulder, G is negative 
for 2012-2014: G = -16.3 for commute pattern sites and -36.4 for non-commute 
pattern sites). 
Y = the year in which the manual count was collected 

 
For modeling purposes, AADB and Adjusted AADB were divided by 100 in order to be similar 
in magnitude to other variables modeled. For the rare situation when volumes from the three-
hour counts were zero, a value of 0.5 was used for AADB and Adjusted AADB for the purposes 
of modeling. 
 
Figure 4.1 shows the bicycle volumes and crashes along segments in Boulder. The figure 
illustrates that crash rates are higher along segments with lower bicycle volumes. 
 
4.1.3 AADT 

The turning movement counts for the AM, midday, and PM peak periods were adjusted to daily 
counts by summing the three peak-hour counts and dividing the sum by 0.225. These daily 
estimates were then multiplied by the daily and monthly factors and annual growth factor to 
estimate AADT. For the rare situations when volumes from the three-hour counts were zero, a 
value of 0.5 was used for AADT for the purposes of modeling. 
 
 

AADT = ckp ∗ Dpyf ∗ Mpyf / H + (2013-Y)*G 
 

Where: 
AADT = the estimated annual average daily motorized traffic 
ckp = the known motor vehicle count for sum of three peak hours (8,12,5) on TWorR 
Dpyf = the daily motor vehicle factor for a given month in a given year, y, for a 
factor group, f, for TWorR 
Mpyf = the monthly motor vehicle factor for a given month in a given year, Y, for a 
factor group f. 
H = 0.225 = hourly adjustment factor from Boulder (2010) 
G = the growth factor per year, assuming linear growth  
Y = the year in which the manual count was collected 
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Figure 4.2 shows the map of automobile volumes in Boulder. For the purposes of modeling, the 
AADT was divided by 1,000 so that it is of similar magnitude to other variables modeled. 
 
4.1.4 Pedestrian Volume 

As with AADT and AADB, pedestrian volume was determined by turning movement counts 
taken on a given day during three peak hours. Unlike the AADT and AADB metrics previously 
described, the pedestrian volumes used were simply the sum of the three peak-hour counts. No 
adjustment was applied because no continuous pedestrian count data were available in the city 
during the years in which the turning movement counts were collected. For the rare situation 
when volumes from the three-hour counts were zero, a value of 0.5 was used for pedestrian 
volume for the purposes of modeling. 
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Figure 4.1: Bicycle Volume and Non-fatal, Motorist-bicyclist Crash Map for Boulder 
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Figure 4.2: Automobile Volumes Map for Boulder 
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Looking at Figure 4.1, it is apparent that there are several road segments with high numbers of 
motorist-bicyclist crashes but lower bicycle volumes. From Figure 4.2, it is apparent that these 
segments also have relatively high motor vehicle volumes. To understand the bicycle-involved 
crashes on these segments, it is necessary to know how bicyclists are using them. Many of these 
segments are four lanes, with at-grade rectangular rapid flash beacon (RRFB) crossings, and 
multiuse paths (wide sidewalks) used for pedestrian and bicyclist travel. The crashes on these 
segments may involve bicyclists crossing driveways on the sidepaths or crossing the roadway 
using the RRFBs. A report by the city of Boulder confirms this, indicating that 58 percent of all 
bicycle-involved crashes in the city are at a crosswalk (City of Boulder, 2016). This percent may 
include driveways. From the city’s bicyclist crash database, which is processed using the 
Pedestrian Bicycle Crash Analysis Tool (PBCAT), 58percent of non-intersection related bicyclist 
crashes from 2008 to 2014 are driveway, sidewalk, multiuse path, or crosswalk related, while 
only 30percent were in the travel lane (FHWA, 2016). 
 
4.1.5 Sociodemographics 

Sociodemographic variables such as population density, employment density, and educational 
attainment were investigated during the modeling effort. Each of these were obtained from the 
American Community Survey and are further described below (U.S. Census Bureau, 2016). 
 

4.1.5.1 Population Density 

Population density was computed by intersecting census tracts with a 500-foot buffer 
around the road segment. The percent of the area within the buffer in each of three 
categories (high, medium, and low) was computed. The categories were determined using 
Jenks natural breaks algorithm and are as follows: 

• Low < 79  
• 79 < Medium < 202 
• High > 202 

To aggregate these percentages into one number, the percentage of the area in each 
category was multiplied by the midpoint value of each category in order to get an 
estimated average population density for the 500-foot buffer around the road segment. 
 
4.1.5.2 Employment Density 

Employment density was another sociodemographic variable that was considered in the 
analysis. This variable was also divided into three categories (high, medium, and low) 
again based on the Jenks natural breaks within a 500-foot buffer. The categories for low, 
medium, and high are as follows: 

• Low  <  45 
• 45 <  Medium < 116 
• High > 116 
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4.1.5.3 Educational Attainment 

Educational attainment of the people who live in the area within a 500-foot buffer of the 
road segment was also considered in the analysis. This variable was divided into three 
categories – no high school, high school-some college, or college degree and above.  
These categories were further divided into high, medium, and low based on the Jenks 
natural breaks method. 
 

No High School 
• Low: < 51 
• 51 < Medium < 170 
• High: > 170 

High School – Some College 
• Low: < 15 
• 15< Medium < 49  
• High: > 49 

College Degree or above 
• Low: < 20 
• 20< Medium < 55 
• High: > 55 

 
4.1.6 Land Use 

In this study, four types of land use were considered in the analysis: percent industrial, percent 
retail, percent residential, and percent university. The data were obtained from Boulder’s open 
data portal (City of Boulder, 2016). The percentage of area surrounding the segment within a 
500-foot buffer that fell into each of these four categories was computed and used in the analysis. 
For example, the land use surrounding a particular segment could be 89 percent industrial, 6 
percent residential, 5 percent retail, and 0 percent university. 
 
4.1.7 Facilities 

Types of facilities were also considered in the analysis. Ten facility types were considered: bike 
lanes, multipurpose sidewalks, neighborhood trails, paths, cul-de-sacs, paved trails, paved trails 
next to road, protected bicycle lanes, separated sidewalks, shared lane bicycle routes, and 
unpaved trails. The percentages for each of these categories was computed with respect to the 
percentage of the road segment that contains each of these facilities. For example, a segment 
could contain 20 percent bike lane and 80 percent separated sidewalk. 
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4.2 METHODS 

The purpose of the SPF is to provide estimates of predicted motorist-bicyclists crashes on road 
segments. Creating an SPF requires the statistical modeling of the above variables with the 
dependent variable being the count of the number of motorist-bicyclist crashes. Linear models 
are rarely appropriate for safety studies, so many researchers use a generalized linear model 
(GLM) that is able to account for a non-normal distribution. A Poisson distribution is often 
employed with count data such as ours; however, that is only appropriate when the mean equals 
the variance (Lord et al., 2010). The negative binomial GLM is the generalized form of the 
Poisson model, which allows it to account for this overdispersion issue that is common in crash 
data by introducing a stochastic component to the log-linear Poisson mean function relationship 
(Long, 1997; Marshall et al., 2011). Thus, we created the SPFs using a negative binomial model 
with a generalized linear model with log link, modeled in SAS using the Genmod procedure.  
 
The basic form of the negative binomial generalized linear regression model used is:  
 

lnμi = ε + ∑Χiβn 
 

Where: 
μi = the randomized version of the expected number of collisions at a given road 
segment i 
ε = the random error term, used to account for overdispersion, estimated by the model 
Xi = independent variables 
βn = estimated model parameters for motor vehicle (n=1) and n other independent 
variables 

 
binomial probability distribution is determined by (Long, 1997): 

𝑃𝑃(𝑦𝑦𝑚𝑚|𝑋𝑋𝑚𝑚) =  
𝛤𝛤(𝑦𝑦𝑚𝑚 + 𝜈𝜈𝑚𝑚)
𝑦𝑦𝑚𝑚!  𝛤𝛤(𝜈𝜈𝑚𝑚)

�
𝜈𝜈𝑚𝑚
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: 

The negative 
 

Where
Γ = the gamma distribution function 
νi = the gamma distribution parameter = 1/dispersion parameter 
yi = the number of crashes at intersection i 

 
The variance of the negative binomial distribution is (Long, 1997): 
 

Var(𝑦𝑦𝑚𝑚|𝑋𝑋𝑚𝑚) =  𝜇𝜇𝑚𝑚 +
𝜇𝜇𝑚𝑚2

𝜈𝜈𝑚𝑚
 

 
Since the crashes occur on road segments of different lengths and in an eight-year period, an 
offset of logarithm value of (segment length * number of years) was used when developing the 
models, thus the developed SPFs could be used to predict the number of crashes occurring per 
year per mile on a segment. Since the crashes are occurring on road segments of different lengths 
over the eight-year period, there are two options to model the crash counts: 
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Option 1: The model predicts the number of crashes per year, per mile. This is the most 
common model to predict crashes on a segment. The underlying assumption is that the 
number of crashes is linear to the segment length. 
 
Option 2: An alternative model is to predict the number of crashes on a segment per year. 
Segment length becomes an independent variable.   

 
Models were evaluated based on the Akaike information criterion (AIC) and the Bayesian 
information criterion (BIC), common model comparison criteria, for which lower values indicate 
better fit (Akaike, 1973; Schwarz, 1978). The criteria are expressed as shown in the equations 
below: 
 

AIC = 2k - 2ln(L) 
 

BIC = kln(n) - 2ln(L) 
 

Where: 
  k = number of free parameters in the model 

n = sample size 
L = maximized value of the likelihood function 

A larger maximized value of the likelihood function (L) produces a smaller value for both 
metrics. Likewise, fewer parameters in the model (k) also produces a smaller value for both 
criteria. The difference in the two criteria is the magnitude of the penalty assigned for the 
number of parameters in the model. The AIC uses a multiplier of 2.0 and does not account for 
sample size. The BIC accounts for the size of the sample with the multiplier ln(n). The goal is to 
select the model with the best fit and the fewest parameters. Thus, the BIC was chosen as the 
preferred criterion for comparison of the models. However, the AIC was also used when there 
was no or little change in the BIC. The magnitude of the change in these criteria when choosing 
among models must also be considered. It can be neglected if the change in both AIC and BIC is 
less than 2. The difference can be deemed as substantial if the change is between 2 and 6. If the 
change is greater than 6, then the models with lower values are strongly favored. 

We tried both options and found that the parameter estimates from each were 
comparable. The model comparison criteria AIC are almost the same. The BIC for Option 1 is 
2.7 lower than that for Option 2, indicating Option 1 is better than Option 2. Thus Option 1, the 
crash rates model, was recommended.  

4.3 SUMMARY 

In this study, Boulder was chosen as the location for estimating SPFs for non-fatal bicycle 
crashes on segments. A number of data sources were needed to estimate SPFs. Crash data were 
obtained from DRCOG and mapped to a network. Similarly, AADB and AADT were estimated 
from short-duration counts using expansion factors that were developed from continuous 
counters. Finally, sociodemographic data such as population density, employment density, 
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educational attainment, and other data such as land use and types of bicycle facilities were also 
gathered. The SPFs were created using a negative binomial model with a generalized linear 
model with log link, modeled in SAS using the Genmod procedure. 
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5.0 RESULTS  

Many negative binomial models were explored, including various forms of variables and 
combinations of variables. An early simple model explored the relationship between number of 
crashes and AADT and Adjusted AADB, using a GLM negative binomial model. While both 
variables were significant, the AIC and BIC were much higher than for other models that included 
additional variables. 
 
In order to explore the possible relationship between bicycle crashes and bicyclist exposure, two 
forms of exposure were used: Adjusted AADB divided by 100 (Adjusted AADB/100) and the 
natural logarithm of the Adjusted AADB (ln(Adjusted AADB)). In the first option, the Adjusted 
AADB was scaled to Adjusted AADB/100 in order to be comparable with ln(Adjusted AADB). 
During the model exploration, these two forms of exposure (Adjusted AADB/100 and ln(Adjusted 
AADB)) were both included in a single model and independently in separate models. Similarly, 
two forms of traffic volume (AADT/1000 and ln(AADT)) and pedestrian volume in the form of 
pedestrian volume/10 and ln(pedestrian volume) were included in the initial variables list that was 
explored for the SPF development. Variables with significance above the 5percent level of 
significance were excluded in the final SPF model.  It is worth mentioning that those variables that 
were correlated either strongly or moderately were not used in the same models.  
 
The model with the lowest AIC included pedestrian volume and percentage of facilities that are 
bike lanes but not any of the AADB variables. Because this finding was counterintuitive, a model 
with slightly lower BIC (difference of 1 BIC) was chosen that included adjusted AADB. Since 
AADB was included, pedestrian volume and percent of facilities that are bike lanes were not 
significant. The team concluded that the two variables (pedestrian volume and percentage of 
facilities that are bike lanes) were acting as a surrogate for bicycle volume (Adjusted AADB), and 
it would be clearer to simply include Adjusted AADB directly. 
 
Based on previous work by the authors and others, an exponential relationship with bicycle volume 
was expected to be the best fit (Elvik et al., 2009). However, the model with lowest AIC and BIC 
included Adjusted AADB/100, but not ln(Adjusted AADB).  
 
The final model is shown in Table 5.1 and can be expressed as: 
       
 
C = eε+β

1
AADT/1000+β

2
Adj_AADB/100+ β

3
L+ β

4
D                (1) 

where: 
C= motorist-bicyclist crashes per year per mile of roadway 
ε = the random error term, used to account for overdispersion, estimated by the model 
βn= estimation parameters for the model 
AADT= Annual Average Daily Traffic adjusted to the year 2013 
Adj_AADB = AADB adjusted to the year 2013 
L = Percent of surrounding area within 500 feet of segments that is retail land use 
D = Approximated population density per square mile  
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C=e -3.616+0.050*AADT/1000+0.139*Adj_AADB/100+1.973*L+0.0002* D                        (2) 
 
Table 5.1:  Final Model Estimated Parameters 
 

Parameter Estimate Standard 
Error 

Wald 95%    
Confidence Limits 

Wald Chi-
Square 

Pr > 
ChiSq 

Intercept -3.616 0.391 -4.382 -2.849 85.51 <.0001 
AADT/1000 0.05 0.011 0.029 0.071 21 <.0001 
Adj AADB/100 0.139 0.063 0.016 0.262 4.93 0.0264 
L = % retail land use 1.973 0.354 1.279 2.667 31.05 <.0001 
D = approximated 
population density/square 
mile 

0.0002 0.000 0.0001 0.0003 19.28 <.0001 

Dispersion 1.369 0.312 0.876 2.138   
   Model AIC = 592, BIC = 615        
 
A Cumulative Residual (CURE) plot for the predicted number of crashes for each road segment 
using eight years of data is shown in Figure 5.1 (Hauer and Bamfo, 1997). The CURE plot indicates 
that the model fit is relatively good, with the central data within the upper and lower bounds.  
  

 
Figure 5.1: CURE Plot for Selected Model 
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5.1 DISCUSSION  

The analysis shows that higher motor vehicle volume is a leading factor associated with an increase 
in crashes between motor vehicles and bicyclists. Bicyclist traffic volume, population density, and 
percent retail land use are also significant.   

Higher levels of retail land use and population density were consistently found to be 
significantly associated with motorist-bicyclist crashes on road segments across the various models 
tested. While certain land uses do not directly cause such crashes, areas with more retail 
development may be more confusing to drivers, perhaps due to more curb cuts, which could 
complicate the driving task and cause drivers not to see bicyclists either in the road, at a driveway 
crossing of a sidepath, or at a midblock crossing. Alternatively, bicyclists may make sudden turns 
or ride on the sidepaths to access retail establishments.  Boulder has suburban-style retail 
developments where parking lot access driveways cross multiuse paths. Pedestrian volumes are 
moderately correlated with percent retail, indicating that there may be some collinearity between 
these two variables. 

The types of crashes on road segments include crashes at driveways (53percent) as well as 
bicyclists crossing roadways at midblock locations. From Boulder’s bicyclist crash database, 
which is processed using the Pedestrian Bicycle Crash Analysis Tool (PBCAT) , 58percent of non-
intersection related bicyclist crashes from 2008 to 2014 are driveway, sidewalk, multiuse path, or 
crosswalk related, while only 30percent were in the travel lane. 

As mentioned previously, several of the road segments with high numbers of crashes 
shown in Figure 4.1 have RRFBs used by bicyclists and multiuse paths. The data used in our 
analysis do not indicate if the bicyclist was in the roadway, bike lane, midblock crosswalk, or on 
a sidewalk/multiuse path driveway. However, according to Safe Streets Boulder, only 7percent of 
total crashes occur in bicycle lanes (including one fatality), and another 7percent occur in the travel 
lane while 58percent occur in crosswalks (City of Boulder, 2016). If the crash types on these 
segments are primarily crosswalk related, this may explain why pedestrian volume might be a 
significant predictor, since these crossings are primarily designed for pedestrians. Thus, pedestrian 
volume may be a surrogate for bicyclists using midblock or driveway crosswalks. However, since 
pedestrian traffic volume data are rare, it is unlikely that pedestrian volumes would be available 
where bicycle volume data are not available. 

Also of interest are the variables that were explored but not included in the final model. 
Some variables, like employment density and education level, were correlated with population 
density and thus not included to reduce potential multicollinearity issues. Other variables, such as 
infrastructure variables for the presence of sidewalks, presence of protected bike lane, etc. were 
not included because they were often not present, meaning that many of the values were zero. 

It should be noted that since all the data have been collected from Boulder, the results may 
not be applicable to other communities. A full list of limitations of this work follow. 

 

5.2 INTERPRETATION 

After the models were developed, the next step was to interpret what these mean for the safety of 
road users. The final model includes the following significant variables: AADT, AADB, percent 
retail land use, and population density. The following sections provide a better understanding of 
the range of values for which this model is applicable. 
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5.2.1 AADT 

Figure 5.2 shows a histogram of the AADT values for the 347 road segments studied. Figure 5.2 
clearly illustrates that the majority of the AADT observations that were used in the model were 
between 0 and 30,000. Thus, extrapolating beyond 30,000 AADT is not recommended. 
 

 
 

Figure 5.2: Histogram of AADT 
 
Figure 5.3 shows a histogram of the Adjusted AADB values for the road segments studied. The 
model was built based primarily on Adjusted AADB values between 0 and 600. Thus, 
extrapolating beyond 600 AADT is not recommended. 
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Figure 5.3: Histogram of Adjusted AADB 
 
5.2.2 Percent Retail 

Figure 5.4 shows a histogram of the percent residential values for the road segments studied. 
Though there are a high number of road segments with no retail land use, the model was built 
based on values spread somewhat evenly between 0 and 100 percent. Thus, the model may be 
applicable for any percent retail but is especially suited to lower percent retail values. 
 



44 
 

 
Figure 5.4: Histogram of Land Use Percent Retail 

 
5.2.3 Population Density 

Similarly, because there are few areas in Boulder that have population densities above 12,000 per 
square mile (Figure 5.5), extrapolating the results of the model to denser, more urban areas 
would not be appropriate. The study city is a university town of roughly 100,000 people with an 
urban core surrounded by suburban-style development, mountain parks, and open space. Thus, 
using the results of this model to apply to New York City, for example, may not be appropriate. 
 
The U.S. Census Bureau uses a population density threshold of 1,000 per square mile as part of 
its definition of urban areas (U.S. Commerce Department, 1994). All of the areas studied are 
above 2,000 people per square mile, well above the minimum for urban areas. 
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Figure 5.5: Histogram of Population Density per Square Mile 

 
  
5.2.4 Model Fit 

To better visualize how the model fits the data, the relationship between the predicted and actual 
crashes and Adjusted AADB for a given AADT value (10,000 AADT) were plotted in Figure 
5.6. Here we see that while the predicted curve does trend up for values above 300 Adjusted 
AADB (reverse of the safety in numbers effect), the predicted line is nearly linear for values 
below 300 Adjusted AADB. This is not in accord with the expected safety in numbers effect, 
since it predicts an approximately linear relationship between Adjusted AADB and crashes. 
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Figure 5.6: Predicted and Actual Crashes vs. Adjusted AADB 
 
Similarly, model-predicted and actual number of crashes in relation to AADT can be visualized 
for different values of Adjusted AADB as shown in Figure 5.7 for 30 percent retail land use and 
5,000 population density per square mile. As for AADB, the upward trending curve is the 
opposite of what is expected based on the “safety in numbers” hypothesis. Here again we see that 
there are few segments above 30,000 AADT and that the curves are close to linear for values 
below 30,000 AADT. The figure also shows that there is relatively little difference in predicted 
crashes between 5 and 100 AADB, but there is a relatively larger increase in predicted crashes 
for higher bicycle volumes at 600 AADB. 
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Figure 5.7: Predicted and Actual Crashes vs. AADT 
 
5.2.5 Generalizability 

The current HSM uses a very simplistic method to estimate bicycle crashes, which involves 
applying a factor to total motor-vehicle crashes without including the number of cyclists. 
In this study, we incorporated bicycle volumes to generate a bicycle-specific SPF. However, the 
model was created for a single small university city in Colorado. Caution should be exercised 
when applying it beyond the area in which it was created. However, the research team wanted to 
present the findings in a way that might be useful for practitioners. In addition, the research team 
also wanted to investigate what format might be adoptable by the next edition of the HSM. Table 
5.2 shows the range of predicted motorist-bicyclist intersection crashes based on ranges of input 
variables that were significant predictors in the model. 
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Table 5.2: Range of Predicted Motorist-bicyclist, Non-intersection Crashes (per mile per year) 
 

Population 
Density 

AADB 
Percent Retail 

Land Use 

Motor Vehicle Traffic: AADT 
Low 
(<10,000) 

Medium (10k-
20k) 

High (20k-
30k) 

Low (2,000-
5,000/sq. 
mile) 

 

Low (0-
200) 

Low (0-20%) 0.04 - 0.2 0.06 - 0.4 0.1 - 0.6 
Medium (21-60%) 0.06 - 0.5 0.1 - 0.8 0.2 - 1 
High (60-100%) 0.1 - 1 0.2 - 2 0.3 - 3 

Medium 
(200-
600) 

Low (0-20%) 0.05 - 0.4 0.08 - 0.6 0.1 - 1 
Medium (21-60%) 0.08 - 0.8 0.1 - 1 0.2 - 2 
High (60-100%) 0.2 - 2 0.3 - 3 0.5 - 5 

Medium 
(5,000-
12,000 /sq. 
mile) 

Low (0-
200) 

Low (0-20%) 0.07 - 0.8 0.1 - 1 0.2 - 2 
Medium (21-60%) 0.1 - 2 0.2 - 3 0.3 - 5 
High (60-100%) 0.2 - 4 0.4 - 6 0.6 - 10 

Medium 
(200-
600) 

Low (0-20%) 0.09 - 1 0.2 - 2 0.2 - 4 
Medium (21-60%) 0.1 - 3 0.2 - 5 0.4 - 8 
High (60-100%) 0. 3 -7 0.5 - 11 0.8 - 18 

 
Average daily bicycle volumes have been broken into categories developed by past research: 

• Colorado bicycle count sites were categorized by AADB into three categories: Low <200 
per day; Medium 200-600; and High >600 (Nordback et al., 2013). 

• NCDOT categorized Average Daily Bicyclists into three categories: Low <100; Medium 
100 to 500; and High >500 (O-Brien et al., 2016, Page 10-8, Figure 12); 

For the purposes of this study, based on the histogram in Figure 5.3 and Jenks natural breaks 
analysis, which broke the distribution into groups at 0-165, 165-500, and >500, we are 
categorizing our sites into 0-200 and 200-600. As mentioned previously, sites with over 600 are 
high volume sites, and we do not have enough such sites in the sample data to extrapolate above 
600 annual average bicyclists per day. 
 
Percent retail is categorized into three categories using Jenks natural breaks: 0-20percent retail is 
considered Low Retail, 20-60percent retail is considered Medium Retail, and >60percent retail is 
considered High Retail. 
 
Population density is divided into categories based on the Jenks natural breaks discussed earlier, 
with categories being defined as Low (<4,700 per square mile), Medium (4,700 to 12,000 per 
square mile), and High (>12,000 per square mile). To simplify slightly, we propose breaking 
these into similar groups: Low density 2,000-5,000 per square mile; Medium density 5,000 to 
12,000 per square mile. We do not use the highest group (>12,000 per square mile) because we 
have too few road segments in that category. We also excluded very low density (below 2,000 
people per square mile) since these are not represented in the studied data set. 
 
While the team does not recommend that the numbers in Table 5.2 be adopted by the HSM, since 
they were estimated based on data from one city only, the research team proposes Table 5.2 as a 
possible format for helping practitioners use the results of research such as the model presented 
herein. Such a format may be useful in future updates to the HSM. 
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5.3 LIMITATIONS 

There are many limitations of our findings based on the data and the analysis. Data-related 
limitations include: 

• The bicycle and pedestrian volumes used have not been validated. It is possible that the 
pedestrians or bicycles were not correctly counted by the video image processing 
software used in the turning movement count process or that bicycles may be counted as 
pedestrians or vice versa. 

• Data were only collected for the city of Boulder, a college town of approximately 
100,000 people, identified by the League of American Bicyclists as one of only four 
Platinum Bicycle Friendly Communities in the United States. Results may not apply to 
other communities with different sizes, characteristics, types of bicycle infrastructure and 
lower levels of bicycle friendliness. 

• Many variables that might impact bicycle safety were not included in this analysis 
because they were not readily available. For example, motor vehicle posted and actual 
speed was not included. 

• Bicycle infrastructure included in this study was primarily standard bike lanes, generally 
4 to 5 feet in width. While Boulder does have other infrastructure types like bicycle 
routes, multiuse paths paralleling streets, and protected bike lanes, there were either not 
enough of these or not a large enough impact on safety to be included as a significant 
variable in the analysis.  

• Though midblock crossings may be impacting safety on the road segments studied, we 
did not have a comprehensive list of locations of marked midblock crossings, nor of 
crossings with the rectangular rapid flash beacons (RRFBs) common in the city. 

• Based on the range of values included in the data, predicted crashes with values beyond 
the following are not reliable. The model applies best to the values in the following 
ranges: 

o AADT between 0 and 30,000 
o AADB between 0 and 600 bicyclists per day 
o Population density 2,000 to 12,000 per square mile 
o Any value of percent retail land use 

5.4 SUMMARY 

In this section, we present the best-fit negative binomial model with log link to predict annual 
non-fatal, motorist-bicyclist crashes on road segments per mile. It requires four input variables: 
AADT, AADB, percent retail land use, and population density. Surprisingly, the exponential 
form of the model does not support the “safety in numbers” effect, seen so commonly in other 
research including the bicycle SPF developed previously for intersections in Boulder (Nordback, 
et al., 2014). For the lower values of AADT and AADB on which the model was built, the model 
appears close to linear in form.  
 
We then discuss over what range of values the model should be applied and create a table to 
present the results in a format that might serve as a potential starting point for future efforts to 
generalize the results of models for possible use in the updated HSM.  
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6.0 CONCLUSIONS AND RECOMMENDATIONS  

On-road bicycling inevitably carries risk of motorist-bicyclist collisions.  However, the health 
benefits of bicycling have been found to outweigh safety risks (de Hartog et al., 2010).  
Improving bicycling safety is therefore a valuable pursuit. An important insight in this pursuit of 
improved bicycling safety is a better understanding of what factors are associated with motorist-
bicyclist collisions.  However, the common practice of deducing a rate of collisions per vehicle 
represents a fundamental misunderstanding of this risk (Hauer, 2010). Safety performance 
functions (SPFs) are able to estimate the relationship between collisions and exposure by 
accounting for the nonlinear relationship between exposure and risk. While SPFs that estimate 
motor vehicle collisions have been comprehensively developed, those that estimate bicycle 
collisions have not (AASHTO, 2010).   
 Existing bicycle SPFs primarily focus on intersections, which is where the majority of 
bicycle crashes occur (Nordback, 2014). However, no bicycle SPFs in the United States that 
utilize bicycle volume data exist for segments. This study adopts methods from the Highway 
Safety Manual (HSM) used for motor vehicle SPFs in order to develop bicycle-specific SPFs for 
roadway segments in Boulder, CO (AASHTO, 2010). This is a preliminary effort at developing a 
bicycle-specific SPF for segments in the U.S. that utilizes bicycle volumes, is an important first 
step towards further understanding bicyclist safety, and may inform future versions of the HSM. 
 First a comprehensive literature review was undertaken to review existing literature on 
exposure measures, bicycle infrastructure, and studies that incorporate bicycle volumes to 
determine bicycle safety impacts. Both population- and travel-based exposure measures have 
been used in the literature to study the risk associated with cycling. Additionally, facilities have 
been studied extensively as they relate to bicycle safety. The literature review also revealed that 
studies involving the use of the SPFs are limited and, at the time of writing, the authors are not 
aware of any study that has developed SPFs for bicycle crashes and bicycle volume for a U.S. 
city along road segments. 
 Prior to choosing locations to study, the team reviewed existing data sources by 
community in order to find study areas with consistent data or at least to identify one area with 
sufficient data for bicycle-safety study. Our research team used non-fatal cyclist crash data from 
eight different communities: Arlington, VA(city/county); Bellingham, WA(city); Boulder, CO 
(city); Denver, CO(city/county); Minneapolis and St. Paul, MN(cities); Philadelphia, 
PA(city/county); Portland, OR(city); and San Diego, CA (county). Our research team examined 
these data for issues pertaining to quality and consistency and ultimately selected Boulder for 
further analysis since it had the best available data. 

In this analysis, a negative binomial model with log link was used to predict annual, non-
fatal, motorist-bicyclist crashes on road segments per mile. While both vehicle volume and 
bicycle volume data are used in the model in order to account for the “safety in numbers” effect, 
the model did not demonstrate this effect seen so commonly in other research, including the 
bicycle SPF developed previously for intersections in Boulder (Nordback et al., 2014).   
The analysis shows that motor vehicle volume is a leading factor associated with increases in 
crashes between motor vehicles and bicyclists. Bicyclist exposure, population density, and 
percent retail land use are also predictive. This study also investigated the potential of various 
simplified methods to include bicycle volumes in future versions of the HSM. The project 
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examined how and if the SPFs developed could be simplified for use in future versions of the 
HSM.  
 

6.1 RECOMMENDATIONS 

There are many implications of this work for practice: 
• Jurisdictions could build on the work we have done here and construct similar SPFs to 

model bicycle crashes on their roadways.  
• Others can compare the models they develop for motorist-bicyclist crashes on urban road 

segments to our findings to see if they find similar curve shapes and similar significant 
variables. 

• The developed SPFs can then be used to predict crashes along road segments and 
determine where unexpectedly high numbers of crashes exist, using the Empirical Bayes 
approach from the HSM. This information can then be used to prioritize road segments 
for improvements. 

• Based on the model, cities may also work to reduce motor vehicle volumes, especially on 
roads with high bicycle volumes, in pursuit of reducing motorist-cyclist crashes. 

• Similarly, jurisdictions may focus efforts on concentrating bicycle travel on corridors 
with low motor vehicle volumes. 

• Special care should be taken in areas with high retail activity where cyclists and drivers 
make frequent turns and other maneuvers to access businesses. Reducing speeds in such 
areas may be a low-cost solution.  

• Providing safer midblock crossings for bicyclists as well as pedestrians by using crossing 
treatments similar to those found effective for pedestrians (median refuge islands, 
rectangular rapid flash beacons, pedestrian hybrid beacons, etc.) may also reduce 
motorist-bicyclist crashes. 

• Separated bicycle lanes should also be considered to reduce motorist-bicyclist crashes.  

6.2 FUTURE WORK 

 Having bicycle SPFs for road segments is essential if we seek to rely upon quantitative 
analysis in our transportation decision making. It also represents a necessary step to improving 
our holistic understanding of bicycling safety. This work puts us on that path to a broader 
awareness of bicycle safety. We look at Boulder as an exploration of how a bicycle-specific SPF 
for segments may better inform bicycle safety. 
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6.2.1.1 Appendix A: DATA PREPARATION METHODS 

 
Shapefiles at large 
This project was largely assembled within ArcMap and exported to Microsoft Excel for further 
analysis and data assembly. The original files for streets, bicycle facilities, land use, zip codes, 
and boundaries were acquired from the City of Boulder. Crash data points were acquired from 
the Denver Regional Council of Governments (more on that below). All other shapefiles/layers 
were assembled in house using existing data. 
 
ArcMap 
ESRI’s ArcMap was used to put together all the maps and database files found below. The 
master ArcMap file is found on both the Dropbox and PSU’s I:Drive. 
 
Road Segments 
Road segments were originally created based on the intersectional points of Boulder’s manual 
traffic count data. One manual count form would account for 3 or 4 directions (east, west, north, 
and south). The road segments were created in ArcMap via the following method: 

1. Find the intersection using Boulders’ PDF count sheets. 
2. Clip out the relevant road segments leading out of the intersection point. 
3. When all intersections were completed, they were merged into a single shapefile. 

Due to Boulder’s original road segments being broken at each individual street cross section, we 
opted to expand our own street segments in order to create longer distances from count point to 
count point. This was done to account for the fact that bicyclists likely traveled along the same 
route for longer distances. The following explains our methodology for road segment length. A 
road segment was merged with other sections until: 

• It hit another count location. 
• It hit either a stop signal or an arterial. 
• It hit three small blocks. 
• It ended. 

In some cases, such as highways that continued on for long stretches without any original breaks, 
we performed no manipulation. 
 
Crash points 
Crash points were given to us from the Denver Regional Council of Governments and include 
crashes from 2004 – 2013 (later years were not available at the time of this writing). The crash 
data files had to first be combined (since they came in individual year formats). From there, all 
non-bicycle-motorist crashes were pulled out. All intersection crashes were pulled out. And, 
finally, all fatal crashes were removed. With lat/long data we were able to map the crash points 
into ArcMap. Unfortunately, despite all crashes being non-intersection, many points were still 
situated within an intersection. After consulting with DRCOG the following method was used to 
maps these crashes to road segments: 

1. First vehicle of travel was noted in the records. 
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2. According to DRCOG, “first vehicle of travel” was the primary vehicle causing the 
incident. 

3. Therefore, a vehicle traveling southbound would logically sit north of the intersection.  
4. The crash was then mapped to the road segment north of where the crash point lay in the 

intersection. 

If an intersection point was mapped on a road segment, that road segment was then used and 
superseded the above method. 
 
Bicycle and automobile volume mapping 
Volumes were mapped using both the road segments and the PDFs. First, the volume data were 
entered into a Microsoft Excel sheet. Each directional road volume was created by adding up the 
various directions corresponding with the road. For example, a road segment north of the 
intersection was created by adding up the various volumes of the: 

• Southbound thru 
• Southbound u-turn 
• Northbound thru 
• Eastbound right turn 
• Westbound left turn 

Each road direction was given its own ID number and then each intersection was given its own 
ID number. After that the road segment shapefile in ArcMap was exported. Road segment IDs 
from ArcMap were matched up with the ID numbers from the spreadsheet. The new file was 
then added to ArcMap, and joined with the road segment layer based on segment ID. This gave 
us our volume mapping along road segments. Note that bicycles in crosswalks were not used. 
Only bicycles on the roadway were used in this volume mapping and count. 
 
Ped Volumes 
Ped volumes were constructed in a similar manner as the bike and automobile maps, but were 
not mapped. The data was simply used as a reference point within the data as no factors were 
ever created to extrapolate the manual counts into annual averages. The data does exist within 
the master statistics spreadsheet, however, instead of as a number, the data was broken into “low, 
medium, or high” amounts based on the Natural Breaks (Jenks) methodology. Those breaks are 
as follows: 

• Low: < 145 
• Medium: > 512 , < 1246 
• High: > 1246 

Land use, demographic data, and bicycle facilities along road segments 
For our report, we decided to use the following variables to compare the volume and crashes to: 

• Land use/zones: City of Boulder. (2016). Open Data Catalog (Publication.: 
https://bouldercolorado.gov/open-data) 

• Population density: ACS 
• Employment density: ACS 
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• Educational attainment: ACS 
• Bicycle facilities: City of Boulder 

 In mapping land use, demographic, and bicycle facility data we used the following method: 
1. Created a 500ft buffer around all road segments (50ft for bicycle facilities). 
2. Loaded the land use shapefile into the document. 
3. Intersected the segment buffer and the land use shapefile with the buffer on top. 
4. Exported the results into an excel file. 
5. Created a pivot table of the data in Microsoft Excel. 
6. Used SiteID and land use/demographic/bicycle facilities area/length to compute  

The results were then combined with the volume and crash data within a single spreadsheet using 
the original road segment ID numbers are the matching point to keep everything consistent.  
For population density, employment density, and educational attainment levels the quantitative 
data was converted to a “low, medium, or high” scale based on the Natural Breaks (Jenks) 
method within ArcMap. These data were obtained from the American Community Survey (U.S. 
Census Bureau. (2016). "American Factfinder." American Community Survey.) Those breaks are 
as follows: 
 
Population Density (per square mile) 

• Low: < 4,700 
o 42 census tracts in this group. (intersecting Boulder city footprint) 
o Median is 1,560 people per square mile 

• Medium: > 4700, < 12,000 
o 37 census tracts this group. (intersecting Boulder city footprint) 
o Median is 7,570 people per square mile. 

• High: > 12,000 
o Highest in GIS is 24,870 people per square mile.  
o 8 Census Tracts in Boulder are in the High category.  

Employment Density (per square mile) 
• Low: < 2,700 
• Medium: > 2,700, < 6,900 
• High: > 6,900 

Educational Attainment Levels (per square mile) 
No High School 

• Low: < 3,000 
• Medium: > 3,000, < 10,000 
• High: > 10,000 

High School – Some College 
• Low: < 900 
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• Medium: > 900, < 2,900  
• High: > 2,900 

College Degree or above 
• Low: < 1,200 
• Medium: > 1,200,  <3,300 
• High: > 3,300 

 
Bicycle facilities are simply in length based on feet. Note, however, that a bicycle facility’s 
length may be longer than that of the road length. This is likely due to the fact that bike facilities 
could be counted twice (northbound/southbound for example) or due to variations in a trail 
zigzagging near a road segment. Direct comparisons from bicycle facility length to road length 
are challenging due to this. 
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APPENDIX B: DATA DICTIONARY 
 
GenID – General individual ID number for each row. No significant impact on data. 
IntersectionID – ID number assigned to each intersection from 2 hour volume counts. Use to 
easily sort out which crashes and volumes are associated with each intersection. Specific 
intersections can be found in the latest version of the “Boulder Crash and Volume Master 
Spreadsheet” file under ‘volume.’ 
GIS_ID - ID number created within ArcMap that aligns with the GIS road segments. Use this ID 
number to join with the road segment “OBJECTID” number. 
AADT – Annual average daily automobile traffic. 
AADB – Annual average daily bicycle traffic. 
StreetID – Duplicate of GIS_ID for redundancy. Ignore or remove in your own version of this 
file. Do not remove in the master version of this file. 
LandUse_Industrial_Percent – Percent of the area surrounding the road segment that is 
industrial based on a 500ft buffer. 
LandUse_Residential_Percent – Percent of the area surrounding the road segment that is 
residential based on a 500ft buffer. 
LandUse_Retail_Percent – Percent of the area surrounding the road segment that is retail based 
on a 500ft buffer. 
LandUse_University_Percent – Percent of the area surrounding the road segment that is 
university based on a 500ft buffer. 
LandUse_Industrial_Area – Square foot area surrounding the road segment that is industrial 
based on a 500ft buffer. 
LandUse_Residential_Area – Square foot area surrounding the road segment that is residential 
based on a 500ft buffer. 
LandUse_Retail_Area – Square foot area surrounding the road segment that is retail based on a 
500ft buffer. 
LandUse_University_Area – Square foot area surrounding the road segment that is university 
based on a 500ft buffer. 
Pop_Density_High_Percent – Percent of the area surrounding the road segment that has a 
“high” percentage of density based on Natural Breaks (Jenks) created in ArcMap based on a 
500ft buffer. 
Pop_Density_Low_Percent – Percent of the area surrounding the road segment that has a “low” 
percentage of density based on Natural Breaks (Jenks) created in ArcMap based on a 500ft 
buffer. 
Pop_Density_Medium_Percent – Percent of the area surrounding the road segment that has a 
“medium” percentage of density based on Natural Breaks (Jenks) created in ArcMap based on a 
500ft buffer. 
Pop_Density_High_Area – Square footage of the area surrounding the road segment that has a 
“high” percentage of density based on Natural Breaks (Jenks) created in ArcMap based on a 
500ft buffer. 
Pop_Density_Low_Area – Square footage of the area surrounding the road segment that has a 
“low” percentage of density based on Natural Breaks (Jenks) created in ArcMap based on a 500ft 
buffer. 
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Pop_Density_Medium_Area – Square footage of the area surrounding the road segment that 
has a “medium” percentage of density based on Breaks (Jenks) created in ArcMap based on a 
500ft buffer. 
Emp_Density_High_Percent – Percent of the area surrounding the road segment that has a 
“high” percentage of employment density based on Natural Breaks (Jenks) created in ArcMap 
based on a 500ft buffer. 
Emp_Density_Low_Percent – Percent of the area surrounding the road segment that has a 
“low” percentage of employment density based on Natural Breaks (Jenks) created in ArcMap 
based on a 500ft buffer. 
Emp_Density_Medium_Percent – Percent of the area surrounding the road segment that has a 
“medium” percentage of employment density based on Breaks (Jenks) breaks created in ArcMap 
based on a 500ft buffer. 
Emp_Density_High_Area – Square footage of the area surrounding the road segment that has a 
“high” percentage of employment density based on Natural Breaks (Jenks) created in ArcMap 
based on a 500ft buffer. 
Emp_Density_Low_Area – Square footage of the area surrounding the road segment that has a 
“low” percentage of employment density based on Natural Breaks (Jenks) created in ArcMap 
based on a 500ft buffer. 
Emp_Density_Medium_Area – Square footage of the area surrounding the road segment that 
has a “medium” percentage of employment density based on Natural Breaks (Jenks) created in 
ArcMap based on a 500ft buffer. 
Edu_No_High_High_Percent – Percent of the area surrounding the road segment that has a 
“high” percentage of no high school diploma attainment based on Natural Breaks (Jenks) created 
in ArcMap based on a 500ft buffer. 
Edu_No_High_Low_Percent – Percent of the area surrounding the road segment that has a 
“low” percentage of no high school diploma attainment based on Natural Breaks (Jenks) created 
in ArcMap based on a 500ft buffer. 
Edu_No_High_Med_Percent – Percent of the area surrounding the road segment that has a 
“medium” percentage of no high school diploma attainment based on Natural Breaks (Jenks) 
created in ArcMap based on a 500ft buffer. 
Edu_No_High_High_Area – Square footage of the area surrounding the road segment that has 
a “high” percentage of no high school diploma attainment based on Natural Breaks (Jenks) 
created in ArcMap based on a 500ft buffer. 
Edu_No_High_Low_Area – Square footage of the area surrounding the road segment that has a 
“low” percentage of no high school diploma attainment based on Natural Breaks (Jenks) created 
in ArcMap based on a 500ft buffer. 
Edu_No_High_Med_Area – Square footage of the area surrounding the road segment that has a 
“medium” percentage of no high school diploma attainment based on Natural Breaks (Jenks) 
created in ArcMap based on a 500ft buffer. 
Edu_High_High_Percent – Percent of the area surrounding the road segment that has a “high” 
percentage of high school diploma attainment based on Natural Breaks (Jenks) created in 
ArcMap based on a 500ft buffer. 
Edu_High_Low_Percent – Percent of the area surrounding the road segment that has a “low” 
percentage of no high school diploma attainment based on Natural Breaks (Jenks) created in 
ArcMap based on a 500ft buffer. 
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Edu_High_Med_Pecent – Percent of the area surrounding the road segment that has a 
“medium” percentage of no high school diploma attainment based on Natural Breaks (Jenks) 
created in ArcMap based on a 500ft buffer. 
Edu_High_High_Area – Square footage of the area surrounding the road segment that has a 
“high” percentage of no high school diploma attainment based on Natural Breaks (Jenks) created 
in ArcMap based on a 500ft buffer. 
Edu_High_Low_Area – Square footage of the area surrounding the road segment that has a 
“high” percentage of no high school diploma attainment based on Natural Breaks (Jenks) created 
in ArcMap based on a 500ft buffer. 
Edu_High_Med_Areat – Square footage of the area surrounding the road segment that has a 
“high” percentage of no high school diploma attainment based on Natural Breaks (Jenks) created 
in ArcMap based on a 500ft buffer. 
Edu_Coll_High_Percent – Percent of the area surrounding the road segment that has a “high” 
percentage of bachelor’s degree or higher diploma attainment based on Natural Breaks (Jenks) 
created in ArcMap based on a 500ft buffer. 
Edu_Coll_Low_Percent – Percent of the area surrounding the road segment that has a “low” 
percentage of bachelor’s degree or higher diploma attainment based on Natural Breaks (Jenks) 
created in ArcMap based on a 500ft buffer. 
Edu_Coll_Med_Percent – Percent of the area surrounding the road segment that has a 
“medium” percentage of bachelor’s degree or higher diploma attainment based on Natural 
Breaks (Jenks) created in ArcMap based on a 500ft buffer. 
Edu_Coll_High_Area – Square footage of the area surrounding the road segment that has a 
“high” percentage of bachelor’s degree or higher diploma attainment based on Natural Breaks 
(Jenks) created in ArcMap based on a 500ft buffer. 
Edu_Coll_Low_Area – Square footage of the area surrounding the road segment that has a 
“low” percentage of bachelor’s degree or higher diploma attainment based on Natural Breaks 
(Jenks) created in ArcMap based on a 500ft buffer. 
Edu_Coll_Med_Area – Square footage of the area surrounding the road segment that has a 
“medium” percentage of bachelor’s degree or higher diploma attainment based on Natural 
Breaks (Jenks) created in ArcMap based on a 500ft buffer. 
StreetID2 – Duplicate of GIS_ID for redundancy. Ignore or remove in your own version of this 
file. Do not remove in the master version of this file. 
Bike_Street_ID – Duplicate of GIS_ID for redundancy. Ignore or remove in your own version 
of this file. Do not remove in the master version of this file. 
Bike_Lane_Percent – Percent of the road segment that has a “bike lane” as compared to other 
bicycle facilities. Does not measure how much of the road segment the facility has.  
Multi_Purpose_Sidewalk_Percent – Percent of the road segment that has a “multi-purpose 
sidewalk” as compared to other bicycle facilities. Does not measure how much of the road 
segment the facility has. 
Neighborhood_Trail_Percent – Percent of the road segment that has a “neighborhood trail” as 
compared to other bicycle facilities. Does not measure how much of the road segment the facility 
has. 
Path_Cul_De_Sac_Links_Percent – Percent of the road segment that has a “cul de sac path 
link” as compared to other bicycle facilities. Does not measure how much of the road segment 
the facility has. 
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Paved_Trail_Percent – Percent of the road segment that has a “paved trail” as compared to 
other bicycle facilities. Does not measure how much of the road segment the facility has. 
Paved_Trail_Next_to_Road_Percen t– Percent of the road segment that has a “paved trail next 
to the road” as compared to other bicycle facilities. Does not measure how much of the road 
segment the facility has. 
Protected_Bicycle_Lane_Percent – Percent of the road segment that has a “protected bicycle 
lane” as compared to other bicycle facilities. Does not measure how much of the road segment 
the facility has. 
Separated_Sidewalk_Percent – Percent of the road segment that has a “separated sidewalk” as 
compared to other bicycle facilities. Does not measure how much of the road segment the facility 
has. 
Shared_Lane_Bicycle_Route_Percent – Percent of the road segment that has a “shared lane 
bicycle route” as compared to other bicycle facilities. Does not measure how much of the road 
segment the facility has. 
Unpaved_Trail_Percent – Percent of the road segment that has a “unpaved trail” as compared 
to other bicycle facilities. Does not measure how much of the road segment the facility has. 
Bike_Lane_Length – Length in feet of the “bike lane” as compared to other bicycle facilities. 
Not compared to full road segment length. 
Multi_Purpose_Sidewalk_Length – Length in feet of the “multi-purpose sidewalk” as 
compared to other bicycle facilities. Not compared to full road segment length. 
Neighborhood_Trail_Length – Length in feet of the “neighborhood trail” as compared to other 
bicycle facilities. Not compared to full road segment length. 
Path_Cul_De_Sac_Links_Length – Length in feet of the “cul-de-sac path link” as compared to 
other bicycle facilities. Not compared to full road segment length. 
Paved_Trail_Length – Length in feet of the “paved trail” as compared to other bicycle 
facilities. Not compared to full road segment length. 
Paved_Trail_Next_to_Road_Length – Length in feet of the “paved trail next to road” as 
compared to other bicycle facilities. Not compared to full road segment length. 
Protected_Bicycle_Lane_Length – Length in feet of the “protected bicycle lane” as compared 
to other bicycle facilities. Not compared to full road segment length. 
Separated_Sidewalk_length – Length in feet of the “separated sidewalk” as compared to other 
bicycle facilities. Not compared to full road segment length. 
Shared_Lane_Bicycle_Route_Length – Length in feet of the “shared lane bicycle route” as 
compared to other bicycle facilities. Not compared to full road segment length. 
Unpaved_Trail_Length – Length in feet of the “unpaved trail” as compared to other bicycle 
facilities. Not compared to full road segment length. 
Crash_ID – Individual ID number given to each crash. 
STREETID3 – Duplicate of GIS_ID for redundancy. Ignore or remove in your own version of 
this file. Do not remove in the master version of this file. 
CRASH_COUNT – Individual crash counts. Multiples can be linked to a single GIS_ID number. 
 
CRASH_NUMBER_SUMMED – Individual crash counts summed up in a single row. From 
DRCOG database, 8 years of data 2006 to 2013 non-intersection and not intersection related 
crashes, motor vehicle bicycle nonfatal crashes only. 
Crash_Location – Direction from the intersection where the crash occurred based on the DIR1 
field. 
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Crash_Street – Street where the crash occurred. 
LOC_01 – Primary location of the first vehicle in crash. 
LOC_02 – Location of the second vehicle in crash.  
LOCATION – Location of the crash. 

1. On Roadway 
2. Ran Off Left Side 
3. Ran Off Right Side 
4. Ran Off ‘T’ Intersection 
5. Vehicle crossed center median into opposing lanes 
6. On private property 

DIR1 – Direction of travel for first vehicle 
1. North 
2. Northeast 
3. East 
4. Southeast 
5. South 
6. Southwest 
7. West 
8. Northwest 

DIR2 – Direction of travel for second vehicle 
1. North 
2. Northeast 
3. East 
4. Southeast 
5. South 
6. Southwest 
7. West 
8. Northwest 

DIR3 – Direction of travel for third vehicle 
1. North 
2. Northeast 
3. East 
4. Southeast 
5. South 
6. Southwest 
7. West 
8. Northwest 

VM1 – First vehicle movement prior to impact 
1. Going straight 
2. Slowing 
3. Stopped in traffic 
4. Making a right turn 
5. Making a left turn 



69 
 

6. Making a u-turn 
7. Passing 
8. Backing 
9. Entering/leaving parked position 
10. Parked 
11. Changing lanes 
12. Avoiding object in roadway 
13. Weaving 
14. Spun out of control 
15. Drove wrong way 
16. Other 

VM2 – Second vehicle movement prior to impact 
1. Going straight 
2. Slowing 
3. Stopped in traffic 
4. Making a right turn 
5. Making a left turn 
6. Making a u-turn 
7. Passing 
8. Backing 
9. Entering/leaving parked position 
10. Parked 
11. Changing lanes 
12. Avoiding object in roadway 
13. Weaving 
14. Spun out of control 
15. Drove wrong way 
16. Other 

VM3 – Third vehicle movement prior to impact 
1. Going straight 
2. Slowing 
3. Stopped in traffic 
4. Making a right turn 
5. Making a left turn 
6. Making a u-turn 
7. Passing 
8. Backing 
9. Entering/leaving parked position 
10. Parked 
11. Changing lanes 
12. Avoiding object in roadway 
13. Weaving 
14. Spun out of control 
15. Drove wrong way 
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16. Other 

KILLED – Number killed 
INJURED – Number injured 
VEHICLES – Number of vehicles involved? Can’t find specific info 
INJLEVEL_0 – Severity of injury 

0. No injury 
1. Complaint of injury 
2. Evident – non incapacitating 
3. Evident – incapacitating 
4. Fatal 

INJLEVEL_1 – Severity of injury 
0. No injury 
1. Complaint of injury 
2. Evident – non incapacitating 
3. Evident – incapacitating 
4. Fatal 

INJLEVEL_2 – Severity of injury 
0. No injury 
1. Complaint of injury 
2. Evident – non incapacitating 
3. Evident – incapacitating 
4. Fatal 

INJLEVEL_3 – Severity of injury 
0. No injury 
1. Complaint of injury 
2. Evident – non incapacitating 
3. Evident – incapacitating 
4. Fatal 

INJLEVEL_4 – Severity of injury 
0. No injury 
1. Complaint of injury 
2. Evident – non incapacitating 
3. Evident – incapacitating 
4. Fatal 

MONTH_ 
DAY_ 
YEAR_ 
HOUR_ 
ROAD – Description of the road 

1. At intersection 
2. Driveway access related 
3. Intersection related 
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4. Non-intersection 
5. Alley related 
6. Roundabout 
7. Highway interchange 
8. Parking lot 

CONTOUR – Contour of the road 
1. Straight On-level 
2. Straight On-grade 
3. Curve On-level 
4. Curve On-grade 
5. Hillcrest 

SURFACE – Road surface type 
1. Concrete 
2. Blacktop 
3. Brick or block 
4. Gravel, slag or stone 
5. Dirt 
6. Other 
7. Unknown 

CONDITION - Condition of the road 
1. Dry 
2. Wet 
3. Muddy 
4. Snowy 
5. Icy 
6. Slushy 
7. Foreign Material 
8. Dry w/ visible icy road treatment 
9. Wet w/ visible icy road treatment 
10. Snowy w/ visible icy road treatment 
11. Icy w/ visible Icy road treatment 
12. Slushy w/ visible icy road treatment 

LIGHTING – Lighting during time of crash 
1. Daylight 
2. Dawn or dusk 
3. Dark – lighted 
4. Dark – Unlighted 

WEATHER – Weather during time of crash 
0. None 
1. Rain 
2. Snow/sleet/hail 
3. Fog 
4. Dust 
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5. Wind 

VT1 – Vehicle type? Can’t find specifics. 
VT2 
VT3 
SPEED1 – Estimated speed limit for vehicles only 
SPEED2 – Estimated speed limit for vehicles only 
SPEED3 – Estimated speed limit for vehicles only 
LATITUDE 
LONGITUDE 
DRV_ACT1 – Action of first driver (officer opinion) 

0. No action 
1. Exceeded safe/posted speed 
2. Impeded traffic 
3. Failed to yield ROW 
4. Disregard stop sign 
5. Failed to stop at signal 
6. Disregarded other device 
7. Improper turn 
8. Turned from wrong lane or position 
9. Other improper turns 
10. Lane violation 
11. Improper passing on left 
12. Improper passing on right 
13. Followed too closely 
14. Improper backing 
15. Signaling violation 
16. Reckless driving 
17. Careless driving 

DRV_ACT2 – Action of second driver (officer opinion) 
0. No action 
1. Exceeded safe/posted speed 
2. Impeded traffic 
3. Failed to yield ROW 
4. Disregard stop sign 
5. Failed to stop at signal 
6. Disregarded other device 
7. Improper turn 
8. Turned from wrong lane or position 
9. Other improper turns 
10. Lane violation 
11. Improper passing on left 
12. Improper passing on right 
13. Followed too closely 
14. Improper backing 
15. Signaling violation 
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16. Reckless driving 
17. Careless driving 

DRV_ACT3  – Action of third driver (officer opinion) 
0. No action 
1. Exceeded safe/posted speed 
2. Impeded traffic 
3. Failed to yield ROW 
4. Disregard stop sign 
5. Failed to stop at signal 
6. Disregarded other device 
7. Improper turn 
8. Turned from wrong lane or position 
9. Other improper turns 
10. Lane violation 
11. Improper passing on left 
12. Improper passing on right 
13. Followed too closely 
14. Improper backing 
15. Signaling violation 
16. Reckless driving 
17. Careless driving 
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